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Preliminaries and motivation: Classical Egorov’s Theorem

Theorem (Egorov), [4]
Given a sequence of Lebesgue measurable functions 〈fn〉n∈ω,
fn : [0, 1]→ [0, 1] which is pointwise convergent on [0, 1] and ε > 0, one
can find a measurable set A ⊆ [0, 1] with m(A) ≥ 1− ε such that the
sequence converges uniformly on A.
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Generalized Egorov’s statement is independent from ZFC

Generalized Egorov’s statement

Given a sequence of functions 〈fn〉n∈ω, fn : [0, 1]→ [0, 1] which is
pointwise convergent on [0, 1] and ε > 0, one can find a set A ⊆ [0, 1]
with m∗(A) ≥ 1− ε such that the sequence converges uniformly on A.

Theorem (T. Weiss, 2004), [12]
In the Laver model, the generalized Egorov’s statement holds.

Theorem (T. Weiss, 2004), [12]
Under (CH) the generalized Egorov’s statement fails.
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Generalized Egorov’s statement is independent from ZFC,
continued

Theorem (R. Pinciroli, 2006), [9]
If nonN < b, the generalized Egorov’s statement holds.

Theorem (R. Pinciroli, 2006), [9]
If nonN = d = c, the generalized Egorov’s statement fails.
Also if there exists a c-Lusin set and nonN = c, the generalized Egorov’s
statement fails.

Recall that a set L is a κ-Lusin set if for any meagre set X , |L ∩ X | < κ,
but |L| ≥ κ.
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Convergence with respect to an ideal

Sequence convergence with respect to I

Given an ideal I on ω and a sequence 〈xn〉n∈ω ∈ Rω we say that the
sequence converges to a point x ∈ R with respect to I (xn →I x) if for
every ε > 0,

{n ∈ ω : |xn − x | > ε} ∈ I .

I ∗-convergence

A sequence 〈xn〉n∈ω ∈ Rω I ∗-converges to a point x ∈ R (xn →I∗ x) if
there exists C ∈ I such that the sequence 〈xn〉n∈(ω\C) converges to x in
the usual sense.
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Convergence with respect to an ideal

Convergence of a sequence of functions with respect to I

We get different notions of convergence of a sequence 〈fn〉n∈ω of
functions [0, 1]→ [0, 1] on A ⊆ [0, 1] with respect to an ideal I on ω,
which were introduced in [1] and [3]:

pointwise ideal, fn →I f if and only if

∀ε>0∀x∈A {n ∈ ω : |fn(x)− f (x)| ≥ ε} ∈ I ,

uniform ideal, fn ⇒I f if and only if

∀ε>0∃B∈I∀x∈A {n ∈ ω : |fn(x)− f (x)| ≥ ε} ⊆ B.
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Convergence with respect to an ideal, continued

I ∗-convergence of a sequence of functions

In this approach we get the following notions of convergence of
a sequence 〈fn〉n∈ω of functions [0, 1]→ [0, 1] on A ⊆ [0, 1]:

I ∗-pointwise, fn →I∗ f if and only if for all x ∈ A, there exists
M = {mi : i ∈ ω} ⊆ ω, mi+1 > mi for i ∈ ω such that
ω \M ∈ I and fmi (x)→ f (x),

I ∗-uniform, fn ⇒I∗ f if and only if there exists M = {mi : i ∈ ω} ⊆ ω,
mi+1 > mi for i ∈ ω such that ω \M ∈ I and fmi ⇒ f on
A.
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Convergence with respect to an ideal, continued

If I , J are ideals on ω, then I ∨ J = {A ∪ B : A ∈ I ∧ B ∈ J} is the least
ideal containing I and J.

J , I -convergence

The above notions can be further generalized. Let J ⊆ I be ideals. If
A ⊆ [0, 1] and 〈fn〉n∈ω is a sequence of functions [0, 1]→ [0, 1], we have
the following notions of convergence.

(J, I )-pointwise, fn →J,I f if and only if for all x ∈ A, there exists N ∈ I
such that for all ε > 0,

{n ∈ ω : |fn(x)− f (x)| ≥ ε} ∈ J ∨ 〈N〉,

(J, I )-uniform, fn ⇒J,I f if and only if there exists N ∈ I and
fn ⇒J∨〈N〉 f on A.

Notice that →I ,I =→I and ⇒I ,I =⇒I . Moreover, →Fin,I =→I∗ , and
⇒Fin,I =⇒I∗ .
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Convergence with respect to an ideal, continued

Therefore we have the following implications between notions of
convergence for ideals J ⊆ I .

→Fin ⇒ →I∗ ⇒ →J,I ⇒ →I

⇑ ⇑ ⇑ ⇑
⇒Fin ⇒ ⇒I∗ ⇒ ⇒J,I ⇒ ⇒I
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Egorov’s statement for ideals: countably generated ideals
An ideal I is countably generated (satisfies the chain condition) if there
exists a sequence 〈Ci 〉i∈ω of elements of I such that Ci ⊆ Ci+1 for all
i ∈ ω and for every A ∈ I , there exists k ∈ ω such that A ⊆ Ck .

Proposition

If I is a countably generated ideal on ω, and fn : [0, 1]→ [0, 1], n ∈ ω are
Lebesgue-measurable functions such that fn →I 0 and ε > 0, then there
exists a measurable set B ⊆ [0, 1] such that m(B) ≤ ε and fn ⇒I 0 on
[0, 1] \ B.

Proposition

If I is a countably generated ideal on ω, and fn : [0, 1]→ [0, 1], n ∈ ω are
Lebesgue-measurable functions such that fn →I∗ 0 and ε > 0, then there
exists a measurable set B ⊆ [0, 1] such that m(B) ≤ ε and fn ⇒I∗ 0 on
[0, 1] \ B.

But there are only two countably generated ideals on ω up to
isomorphism...
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Egorov’s statement for ideals: Finα

Given an ideal I on ω and a sequence 〈In〉n∈ω of ideals on ω, let
I -
∏

n∈ω In be the following ideal. For any A ⊆ ω2,

A ∈ I -
∏
n∈ω

In ⇔ {n ∈ ω : A(n) /∈ In} ∈ I ,

where A(n) = {m ∈ ω : 〈n,m〉 ∈ A}. If In = J for any n ∈ ω, we denote
I -
∏

n∈ω In by I × J.

Fix a bijection b : ω2 → ω and a bijection aβ : ω → β \ {0} for any limit
β < ω1. The ideals Finα, α < ω1, are defined inductively in the
following way. Let Fin1 = Fin be the ideal of finite subsets of ω. We set

Finα+1 = {b[A] : A ∈ Fin× Finα},

and for limit β < ω1, let

Finβ =

{
b[A] : A ∈ Fin-

∏
i∈ω

Finaβ(i)

}
.
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Egorov’s statement for ideals: Finα

Theorem (N. Mrożek, 2010), [8]
If I = Finα for α < ω1, and fn : [0, 1]→ [0, 1], n ∈ ω are
Lebesgue-measurable functions such that fn →I 0 and ε > 0, then there
exists a measurable set B ⊆ [0, 1] such that m(B) ≤ ε and fn ⇒I 0 on
[0, 1] \ B.
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Analytic P-ideals

An ideal I is analytic if {χC : C ∈ I} is analytic as a subset of 2ω.

An ideal I is a P-ideal if for any sequence 〈Ai 〉i∈ω ∈ Iω of mutually
disjoint sets, there exists a sequence 〈Bi 〉i∈ω such that Ai4Bi is finite for
all i ∈ ω, and

⋃
i∈ω Bi ∈ I .

By the well-known result of Solecki ([11]) if I is an analytic P-ideal, then
I = Exh(φ), where φ is a lower semicontinuous submeasure.
A function φ : 2ω → [0,∞] is a lower semicontinuous submeasure if it
satisfies the following conditions:

(1) φ(∅) = 0,

(2) φ(A) ≤ φ(A ∪ B) ≤ φ(A) + φ(B), for any A,B ⊆ ω,

(3) φ(A) = limn→ω φ(A ∩ n), for any A ⊆ ω,

and,
Exh(φ) = {A ⊆ ω : lim

n→∞
φ(A \ n) = 0}.
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Analytic P-ideals: convergence
Let I be an analytic P-ideal. Fix a lower semicontinuous submeasure φ such
that I = Exh(φ).

Convergence with respect to an analytic P-ideal

pointwise ideal, fn →I f if and only if

∀ε>0∀x∈A∃k∈ωφ({n ∈ ω : |fn(x)− f (x)| ≥ ε} \ k) < ε,

equi-ideal, fn �I f if and only if

∀ε>0∃k∈ω∀x∈Aφ({n ∈ ω : |fn(x)− f (x)| ≥ ε} \ k) < ε,

uniform ideal, fn ⇒I 0 if and only if

∀ε>0∃k∈ωφ

({
n ∈ ω : sup

x∈A
|fn(x)− f (x)| ≥ ε

}
\ k
)
< ε.
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Egorov’s statement for ideals: analytic P-ideals

Theorem (N. Mrożek, 2009), [7]
If I is an analytic P-ideal, and fn : [0, 1]→ [0, 1], n ∈ ω are
Lebesgue-measurable functions such that fn →I 0 and ε > 0, then there
exists a measurable set B ⊆ [0, 1] such that m(B) ≤ ε and fn �I 0 on
[0, 1] \ B.

Theorem (N. Mrożek, 2009), [7]
If I is an analytic P-ideal which is not countably generated and
non-pathological. Then there exists a sequence fn : [0, 1]→ [0, 1], n ∈ ω
of Lebesgue-measurable functions such that fn →I 0 and ε > 0, such that
for every a measurable set B ⊆ [0, 1] with m(B) ≤ ε and fn 6⇒I 0 on
[0, 1] \ B.
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The method

Crucial lemma (MK), [5]
Assume that non(N ) < b. Let Φ ∈ (ωω)[0,1]. Then for any ε > 0, there
exists A ⊆ [0, 1] such that m∗(A) ≥ 1− ε and Φ is bounded on A.

Proof: We follow the arguments of Pinciroli (see [9]).
Assume that non(N ) < b. Notice that this statement holds for example in
a model obtained by ℵ2-iteration with countable support of Laver forcing (see
e.g. [2]). Also it can be easily proven that under this assumption there exists
a set Y ⊆ [0, 1] of cardinality less that b such that m∗(Y ) = 1. Indeed, if
N ⊆ [0, 1] is a set of positive outer measure with |N| < b, then let
Y = {x + y : x ∈ N, y ∈ Q}, where + denotes addition modulo 1. Then Y has
outer measure 1 under the Zero-One Law.
Therefore, every function ϕ : [0, 1]→ ωω maps Y onto a Kσ-set, where Kσ
denotes the σ-ideal of subsets of ωω generated by the compact (equivalently
bounded) sets. We get that Φ[Y ] ∈ Kσ. Assume that Φ[Y ] ⊆

⋃
n∈ω Bn with

each Bn bounded. Let An = Φ−1[
⋃n

i=0 Bi ]. Therefore, Φ[An] is bounded, and
for any ε > 0, there exists n ∈ ω such that m∗(An) ≥ 1− ε. �



Preliminaries and motivation Generalization of Pinciroli’s method Applications Further generalizations and open problems

The method

Crucial lemma (MK), [5]
Assume that non(N ) < b. Let Φ ∈ (ωω)[0,1]. Then for any ε > 0, there
exists A ⊆ [0, 1] such that m∗(A) ≥ 1− ε and Φ is bounded on A.

Proof: We follow the arguments of Pinciroli (see [9]).
Assume that non(N ) < b. Notice that this statement holds for example in
a model obtained by ℵ2-iteration with countable support of Laver forcing (see
e.g. [2]). Also it can be easily proven that under this assumption there exists
a set Y ⊆ [0, 1] of cardinality less that b such that m∗(Y ) = 1. Indeed, if
N ⊆ [0, 1] is a set of positive outer measure with |N| < b, then let
Y = {x + y : x ∈ N, y ∈ Q}, where + denotes addition modulo 1. Then Y has
outer measure 1 under the Zero-One Law.
Therefore, every function ϕ : [0, 1]→ ωω maps Y onto a Kσ-set, where Kσ
denotes the σ-ideal of subsets of ωω generated by the compact (equivalently
bounded) sets. We get that Φ[Y ] ∈ Kσ. Assume that Φ[Y ] ⊆

⋃
n∈ω Bn with

each Bn bounded. Let An = Φ−1[
⋃n

i=0 Bi ]. Therefore, Φ[An] is bounded, and
for any ε > 0, there exists n ∈ ω such that m∗(An) ≥ 1− ε. �



Preliminaries and motivation Generalization of Pinciroli’s method Applications Further generalizations and open problems

The method

Crucial lemma (MK), [5]
Assume that non(N ) < b. Let Φ ∈ (ωω)[0,1]. Then for any ε > 0, there
exists A ⊆ [0, 1] such that m∗(A) ≥ 1− ε and Φ is bounded on A.

Proof: We follow the arguments of Pinciroli (see [9]).

Assume that non(N ) < b. Notice that this statement holds for example in
a model obtained by ℵ2-iteration with countable support of Laver forcing (see
e.g. [2]). Also it can be easily proven that under this assumption there exists
a set Y ⊆ [0, 1] of cardinality less that b such that m∗(Y ) = 1. Indeed, if
N ⊆ [0, 1] is a set of positive outer measure with |N| < b, then let
Y = {x + y : x ∈ N, y ∈ Q}, where + denotes addition modulo 1. Then Y has
outer measure 1 under the Zero-One Law.
Therefore, every function ϕ : [0, 1]→ ωω maps Y onto a Kσ-set, where Kσ
denotes the σ-ideal of subsets of ωω generated by the compact (equivalently
bounded) sets. We get that Φ[Y ] ∈ Kσ. Assume that Φ[Y ] ⊆

⋃
n∈ω Bn with

each Bn bounded. Let An = Φ−1[
⋃n

i=0 Bi ]. Therefore, Φ[An] is bounded, and
for any ε > 0, there exists n ∈ ω such that m∗(An) ≥ 1− ε. �



Preliminaries and motivation Generalization of Pinciroli’s method Applications Further generalizations and open problems

The method

Crucial lemma (MK), [5]
Assume that non(N ) < b. Let Φ ∈ (ωω)[0,1]. Then for any ε > 0, there
exists A ⊆ [0, 1] such that m∗(A) ≥ 1− ε and Φ is bounded on A.

Proof: We follow the arguments of Pinciroli (see [9]).
Assume that non(N ) < b. Notice that this statement holds for example in
a model obtained by ℵ2-iteration with countable support of Laver forcing (see
e.g. [2]). Also it can be easily proven that under this assumption there exists
a set Y ⊆ [0, 1] of cardinality less that b such that m∗(Y ) = 1. Indeed, if
N ⊆ [0, 1] is a set of positive outer measure with |N| < b, then let
Y = {x + y : x ∈ N, y ∈ Q}, where + denotes addition modulo 1. Then Y has
outer measure 1 under the Zero-One Law.

Therefore, every function ϕ : [0, 1]→ ωω maps Y onto a Kσ-set, where Kσ
denotes the σ-ideal of subsets of ωω generated by the compact (equivalently
bounded) sets. We get that Φ[Y ] ∈ Kσ. Assume that Φ[Y ] ⊆

⋃
n∈ω Bn with

each Bn bounded. Let An = Φ−1[
⋃n

i=0 Bi ]. Therefore, Φ[An] is bounded, and
for any ε > 0, there exists n ∈ ω such that m∗(An) ≥ 1− ε. �



Preliminaries and motivation Generalization of Pinciroli’s method Applications Further generalizations and open problems

The method

Crucial lemma (MK), [5]
Assume that non(N ) < b. Let Φ ∈ (ωω)[0,1]. Then for any ε > 0, there
exists A ⊆ [0, 1] such that m∗(A) ≥ 1− ε and Φ is bounded on A.

Proof: We follow the arguments of Pinciroli (see [9]).
Assume that non(N ) < b. Notice that this statement holds for example in
a model obtained by ℵ2-iteration with countable support of Laver forcing (see
e.g. [2]). Also it can be easily proven that under this assumption there exists
a set Y ⊆ [0, 1] of cardinality less that b such that m∗(Y ) = 1. Indeed, if
N ⊆ [0, 1] is a set of positive outer measure with |N| < b, then let
Y = {x + y : x ∈ N, y ∈ Q}, where + denotes addition modulo 1. Then Y has
outer measure 1 under the Zero-One Law.
Therefore, every function ϕ : [0, 1]→ ωω maps Y onto a Kσ-set, where Kσ
denotes the σ-ideal of subsets of ωω generated by the compact (equivalently
bounded) sets. We get that Φ[Y ] ∈ Kσ. Assume that Φ[Y ] ⊆

⋃
n∈ω Bn with

each Bn bounded. Let An = Φ−1[
⋃n

i=0 Bi ]. Therefore, Φ[An] is bounded, and
for any ε > 0, there exists n ∈ ω such that m∗(An) ≥ 1− ε. �



Preliminaries and motivation Generalization of Pinciroli’s method Applications Further generalizations and open problems

Witness function o

For a sequence of functions fn : [0, 1]→ [0, 1] and subsets A ⊆ [0, 1], we

consider a notion of convergence fn # f on A. We assume that if B ⊆ A and

fn # f on A, then fn # f on B.

We write fn # f provided that fn # f
on [0, 1]. Let F ⊆ {〈fn〉n∈ω : ∀n∈ωfn : [0, 1]→ [0, 1]} be an arbitrary
family of sequences of functions.

Hypotheses between F and #

(H⇒(F ,#)) There exists o : F → (ωω)[0,1] such that for every F ∈ F
and every A ⊆ [0, 1] if o(F )[A] is bounded in (ωω,≤),
then F # 0 on A.

(H⇐(F ,#)) There exists cofinal o : F → (ωω)[0,1] such that for every
F ∈ F and every A ⊆ [0, 1], if F # 0 on A, then o(F )[A]
is bounded in (ωω,≤).

We say that a function o : X → P from a set X into a partially ordered set P is
cofinal if for every p ∈ P there exists x ∈ X such that p ≤ o(x).
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The positive theorem

Theorem (MK), [5]
Assume that non(N ) < b, and H⇒(F ,#). Then for any 〈fn〉n∈ω ∈ F
and any ε > 0, there exists A ⊆ [0, 1] such that m∗(A) ≥ 1− ε and
fn # 0 on A.

Proof: Apply the crucial lemma for o(〈fn〉n∈ω) given by H⇒(F ,#). �
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The negative theorem

There exists a model of ZFC in which non(N ) = c, and there exists c-Lusin set.

It suffices to iterate ℵ2-times Cohen forcing with finite supports over a model of

GCH (see [2, Model 7.5.8 and Lemma 8.2.6]).

Theorem (MK), [5]
Assume that non(N ) = c, and that there exists a c-Lusin set. If
H⇐(F ,#) holds, then there exist 〈fn〉n∈ω ∈ F and ε > 0 such that for
all A ⊆ [0, 1] with m∗(A) ≥ 1− ε, fn 6# 0 on A.

Proof: Again, we generalize some arguments of Pinciroli (see [9]). Let Z ⊆ ωω
be a c-Lusin set. Since every compact set is meagre in ωω, every Kσ set is also
meagre. Therefore, if A ⊆ Z is a Kσ set, then |A| < c. Let o : F → (ωω)[0,1]

be a cofinal function given by H⇐(F ,#). Let ϕ be a bijection between [0, 1]
and Z . Finally, let 〈fn〉n∈ω = F ∈ F be such that o(F ) ≥ ϕ.
To get a contradiction, assume that for every i ∈ ω, there exists Ai ⊆ [0, 1]
such that m∗(Ai ) ≥ 1− 1/2i and fn # 0 on Ai . Let A =

⋃
i∈ω Ai . For any

i ∈ ω, o(F )[Ai ] is bounded because fn # 0 on Ai , and so ϕ[Ai ] is bounded
since o(F ) ≥ ϕ. Therefore, ϕ[A] ∈ Kσ and |A| = |ϕ[A]| < c because ϕ[A] ⊆ Z .

This is a contradiction because m∗(A) = 1 and non(N ) = c. �
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Fin ideal
Let 〈fn〉n∈ω be such that fn → 0. Set εn = 1/2n, n ∈ ω. Consider
F = {〈fn〉n∈ω : ∀n∈ωfn : [0, 1]→ [0, 1] ∧ fn → 0} and #=⇒. Define
o : F → (ωω)[0,1] in the following way. For F = 〈fn〉n∈ω, let

o(F )(x)(n) = min{m ∈ ω : ∀l≥mfl (x) ≤ εn}.

It is easy to see that the above function o proves that both
H⇐(F→,⇒) and H⇒(F→,⇒) hold, and thus by positive and negative
theorems we obtain the reasoning and the results of Pinciroli.

Theorem (R. Pinciroli, 2006), [9]
If nonN < b, the generalized Egorov’s statement holds.

Theorem (R. Pinciroli, 2006), [9]
If there exists a c-Lusin set and nonN = c, the generalized Egorov’s
statement fails.
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And countably generated ideals

Assume that I is countably generated, and fix sets 〈Ci 〉i∈ω such that Ci ⊆ Ci+1

for all i ∈ ω and for every A ∈ I , there exists k ∈ ω such that A ⊆ Ck . We can
assume that Ci+1 \ Ci 6= ∅ for all i ∈ ω.

If F = 〈fn〉n∈ω, fn →I 0, we define

(o〈Ci 〉F )(x)(n) = min

{
k ∈ ω :

{
m ∈ ω : fm(x) >

1

2n

}
⊆ Ck

}
.

If A ⊆ [0, 1], then fn ⇒I 0 on A if and only if (o〈Ci 〉F )[A] is bounded, and so
H⇒(F→I ,⇒I ) holds.
Also, without a loss of generality we can assume that ϕ(x) is increasing for all
x ∈ [0, 1]. Let x ∈ [0, 1]. Let fj (x) = 1/2n if and only if

j ∈ Cϕ(x)(n+1) \ Cϕ(x)(n).

Thus, H⇐(F→I ,⇒I ) holds.
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And countably generated ideals, continued

Thus we immediately get:

Proposition

Assume that non(N ) < b. Let I be any countably generated ideal, and
let ε > 0. Let F = 〈fn〉n∈ω, fn : [0, 1]→ [0, 1], for n ∈ ω be such that
fn →I 0. Then there exists A ⊆ [0, 1] with m∗(A) ≥ 1− ε such that
fn ⇒I 0 on A.

Proposition

Assume that non(N ) = c, and that there exists a c-Lusin set. Let I be
any countably generated ideal. Then there exists F = 〈fn〉n∈ω,
fn : [0, 1]→ [0, 1] for n ∈ ω with fn →I 0, and ε > 0 such that for all
A ⊆ [0, 1] with m∗(A) ≥ 1− ε, fn 6⇒I 0 on A.
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Also for I ∗ convergence

Let F = 〈fn〉n∈ω be such that fn →I∗ 0. Let F = 〈fn〉n∈ω be such that fn →I∗ 0.
For x ∈ [0, 1] define o〈Ci 〉(F )(x) = ψ ∈ ωω by

ψ(0) = min
{
n ∈ ω : 〈fm〉m∈ω\Cn → 0

}
,

ψ(n) = min

{
m ∈ ω : ∀l∈ω\Cψ(0)

l>m

fl (x) <
1

2n

}
, n > 0.

It is easy to see, that o witnesses H⇒(F→I∗ ,⇒I∗) and H⇐(F→I∗ ,⇒I∗)
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Also for I ∗ convergence, continued

Thus,

Proposition

Assume that non(N ) < b. Let I be any countably generated ideal, and
let ε > 0. Let F = 〈fn〉n∈ω, fn : [0, 1]→ [0, 1], for n ∈ ω be such that
fn →I∗ 0. Then there exists A ⊆ [0, 1] with m∗(A) ≥ 1− ε such that
fn ⇒I∗ 0 on A.

Proposition

Assume that non(N ) = c, and that there exists a c-Lusin set. Let I be
any countably generated ideal. Then there exists F = 〈fn〉n∈ω,
fn : [0, 1]→ [0, 1] for n ∈ ω with fn →I∗ 0, and ε > 0 such that for all
A ⊆ [0, 1] with m∗(A) ≥ 1− ε, fn 6⇒I∗ 0 on A.



Preliminaries and motivation Generalization of Pinciroli’s method Applications Further generalizations and open problems

Also for I ∗ convergence, continued

Thus,

Proposition

Assume that non(N ) < b. Let I be any countably generated ideal, and
let ε > 0. Let F = 〈fn〉n∈ω, fn : [0, 1]→ [0, 1], for n ∈ ω be such that
fn →I∗ 0. Then there exists A ⊆ [0, 1] with m∗(A) ≥ 1− ε such that
fn ⇒I∗ 0 on A.

Proposition

Assume that non(N ) = c, and that there exists a c-Lusin set. Let I be
any countably generated ideal. Then there exists F = 〈fn〉n∈ω,
fn : [0, 1]→ [0, 1] for n ∈ ω with fn →I∗ 0, and ε > 0 such that for all
A ⊆ [0, 1] with m∗(A) ≥ 1− ε, fn 6⇒I∗ 0 on A.



Preliminaries and motivation Generalization of Pinciroli’s method Applications Further generalizations and open problems

Analytic P-ideals
Fix φ such that I = Exh(φ). Notice that since I is a proper ideal,
limi→∞ φ(ω \ i) > 0. If limi→∞ φ(ω \ i) <∞, let

εn =
limi→∞ φ(ω \ i)

2n+1

for n ∈ ω. Otherwise, set εn = 1/2n+1.

For a sequence of functions
F = 〈fn〉n∈ω , fn : [0, 1]→ [0, 1] such that fn →I 0, let oφF ∈ (ωω)[0,1], and

(oφF )(x)(n) = min{k ∈ ω : φ({m ∈ ω : fm(x) ≥ εn} \ k) < εn}.

Lemma (MK),[5]
Let I be an analytic P-ideal. Then, fn �I 0 on A ⊆ [0, 1] if and only if
(oφ(〈fn〉n∈ω))[A] is bounded in ωω. In particular, H⇒(F→I

,�I ) holds.

Proof: By definition, fn �I 0 on A ⇔ for any n ∈ ω, there exists k ∈ ω such

that for all x ∈ A, φ({m ∈ ω : fm(x) ≥ εn} \ k) < εn ⇔ there exists a sequence

〈kn〉n∈ω of natural numbers such that for any n ∈ ω and x ∈ A,

φ({m ∈ ω : fm(x) ≥ εn} \ kn) < εn ⇔ for all x ∈ A, (oφF )(x)(n) ≤ kn. �
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Analytic P-ideals, continued

Theorem (MK),[5]
Assume that non(N ) < b. Let I be any analytic P-ideal, ε > 0, and let
F = 〈fn〉n∈ω, fn : [0, 1]→ [0, 1] for n ∈ ω, be such that fn →I 0. Then
there exists A ⊆ [0, 1] with m∗(A) ≥ 1− ε such that fn �I 0 on A
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Analytic P-ideals, continued

Lemma (MK),[5]
H⇐(F→I

,�I ) holds.

Proof: Fix x ∈ [0, 1]. Notice that φ(ω \ n) is a decreasing sequence with limit

greater or equal to 2ε0 > 0, so φ(ω \ n) ≥ 2ε0 > 0 for any n ∈ ω. Therefore,

for each m, n ∈ ω, there exists k > n such that φ(k \ n) > εm. Let 〈ki 〉i∈ω be

an increasing sequence such that k0 = 0 and φ(ki+1 \ ϕ(x)(i)) > εi , i ∈ ω. Set

fj (x) = εi if ki ≤ j < ki+1. Then fm(x) ≥ εn if and only if m < kn+1. Hence, if

φ({m ∈ ω : fm(x) ≥ εn} \ k) < εn, then k ≥ ϕ(x)(n), so

(oφF )(x)(n) ≥ ϕ(x)(n) for any n ∈ ω. �

Theorem (MK),[5]
Assume that non(N ) < b. Let I be any analytic P-ideal, ε > 0, and let
F = 〈fn〉n∈ω, fn : [0, 1]→ [0, 1] for n ∈ ω, be such that fn →I 0. Then
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Finα ideals
Let Fα = F→Finα

.

Fix a bijection b : ω2 → ω and a bijection aβ : ω → β \ {0} for any limit β < ω1. We

define oα : Fα → (ωω)[0,1] in the following way. Let εn = 1/2n for n ∈ ω, and let

Fn
α = {〈fn〉n∈ω : ∀n∈ωfn : [0, 1]→ [0, 1] ∧ ∀x∈[0,1]{q ∈ ω : fq(x) ≥ εn} ∈ Finα}.

First, define on
α : Fn

α → (ωω)[0,1], n ∈ ω, 0 < α < ω1, by induction on α. Let

M1,n,x = min{p ∈ ω : ∀q≥pfq(x) < εn},

and let
(on

1 F )(x)(k) = M1,n,x

be a constant sequence. Given on
α, let

Mα+1,n,x = min
{

p ∈ ω : ∀q≥p{m ∈ ω : fb(q,m)(x) ≥ εn} ∈ Finα
}
,

and

(on
α+1F )(x)(k) =


Mα+1,n,x for k = b(p, q),

p < Mα+1,n,x + 1, q ∈ ω,(
on
α

〈
fb(p−1,r)

〉
r∈ω

)
(x)(q), for k = b(p, q),

p ≥ Mα+1,n,x + 1, q ∈ ω.

This definition is correct, since
〈
fb(p−1,r)

〉
r∈ω ∈ F

n
α for p ≥ Mα+1,n,x + 1.
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α : Fn

α → (ωω)[0,1], n ∈ ω, 0 < α < ω1, by induction on α. Let

M1,n,x = min{p ∈ ω : ∀q≥pfq(x) < εn},

and let
(on

1 F )(x)(k) = M1,n,x

be a constant sequence. Given on
α, let

Mα+1,n,x = min
{

p ∈ ω : ∀q≥p{m ∈ ω : fb(q,m)(x) ≥ εn} ∈ Finα
}
,

and

(on
α+1F )(x)(k) =


Mα+1,n,x for k = b(p, q),

p < Mα+1,n,x + 1, q ∈ ω,(
on
α

〈
fb(p−1,r)

〉
r∈ω

)
(x)(q), for k = b(p, q),

p ≥ Mα+1,n,x + 1, q ∈ ω.

This definition is correct, since
〈
fb(p−1,r)

〉
r∈ω ∈ F

n
α for p ≥ Mα+1,n,x + 1.
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Finα ideals, continued

Moreover, for limit β < ω1, let

Mβ,n,x = min
{

p ∈ ω : ∀q≥p{m ∈ ω : fb(q,m)(x) ≥ εn} ∈ Finaβ (q)

}
and

(on
βF )(x)(k) =


Mβ,n,x for k = b(p, q),

p < Mβ,n,x + 1, q ∈ ω,(
on

aβ (p−1)

〈
fb(p−1,r)

〉
r∈ω

)
(x)(q), for k = b(p, q),

p ≥ Mβ,n,x + 1, q ∈ ω.

This definition is correct, since, for each p ≥ Mβ,n,x + 1,
〈
fb(p−1,r)

〉
r∈ω ∈ F

n
aβ (p−1)

.

Notice that Fα ⊆ Fn
α, for any n ∈ ω. Therefore, finally let

(oαF )(x)(k) = (on
αF )(x)(m),

for k = b(n,m), n,m ∈ ω.
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Finα ideals, continued

The construction is done in such a way that H⇒(Fα,⇒Finα) holds.

Theorem (MK),[5]
Assume that non(N ) < b. Let 0 < α < ω1, and let ε > 0 and
F = 〈fn〉n∈ω, fn : [0, 1]→ [0, 1] for n ∈ ω, with fn →Finα 0. Then there
exists A ⊆ [0, 1] with m∗(A) ≥ 1− ε such that fn ⇒Finα 0 on A.

Also,

Theorem (MK),[5]
Assume that non(N ) = c, and that there exists a c-Lusin set. Let
0 < α < ω1. Then there exist 〈fn〉n∈ω ∈ Fα and ε > 0 such that for all
A ⊆ [0, 1] with m∗(A) ≥ 1− ε, fn 6⇒Finα 0 on A.

Sketch of the proof: It is enough to take

(oαF )(x)(n) = Mα,n,x .
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Other properties
A mapping o : F → (ωω)[0,1] is said to be measurability preserving, if for any sequence
of measurable functions 〈fn〉n∈ω ∈ F , o(f ) is measurable as well.

Other hypotheses

(H̄⇒(F ,#)) There exists o : F → (ωω)[0,1] such that for every F ∈ F and every
A ⊆ [0, 1] if o(F )[A] is bounded in (ωω ,≤∗), then F # 0 on A.

(H̄⇐(F ,#)) There exists o : F → (ωω)[0,1] which is cofinal (with respect to ≤)
such that for every F ∈ F and every A ⊆ [0, 1], if F # 0 on A, then
o(F )[A] is bounded in (ωω ,≤∗).

(M⇒(F ,#)) There exists measurability preserving o : F → (ωω)[0,1] such that for
every F ∈ F and every A ⊆ [0, 1] if o(F )[A] is bounded in (ωω ,≤),
then F # 0 on A.

(M⇐(F ,#)) There exists measurability preserving cofinal o : F → (ωω)[0,1] such
that for every F ∈ F and every A ⊆ [0, 1], if F # 0 on A, then
o(F )[A] is bounded in (ωω ,≤).

(M̄⇒(F ,#)) There exists measurability preserving o : F → (ωω)[0,1] such that for
every F ∈ F and every A ⊆ [0, 1] if o(F )[A] is bounded in (ωω ,≤∗),
then F # 0 on A.

(M̄⇐(F ,#)) There exists measurability preserving o : F → (ωω)[0,1] which is
cofinal (with respect to ≤) such that for every F ∈ F and every
A ⊆ [0, 1], if F # 0 on A, then o(F )[A] is bounded in (ωω ,≤∗).
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Other properties, continued

We get that
H̄⇒(F ,#) ⇒ H⇒(F ,#) H⇐(F ,#) ⇒ H̄⇐(F ,#)

⇑ ⇑ ⇑ ⇑
M̄⇒(F ,#) ⇒ M⇒(F ,#) M⇐(F ,#) ⇒ M̄⇐(F ,#)

It is also easy to get the following Corollary

Corollary (M. Repický), [10]
Assume that M⇒(F ,#) holds. Then for every sequence of measurable
functions F = 〈fn〉n ∈ ω ∈ F , and ε > 0, there exists a measurable set
A ⊆ [0, 1] such that m(A) ≥ 1− ε, and f # 0 on A.

Also the negative theorem can be slightly refined

Corollary (M. Repický), [10]
Assume that non(N ) = c, and that there exists a c-Lusin set. If H̄⇐(F ,#)
holds, then there exist 〈fn〉n∈ω ∈ F and ε > 0 such that for all A ⊆ [0, 1] with
m∗(A) ≥ 1− ε, fn 6# 0 on A
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Repický’s results

In [10] the property H̄⇐(F ,#), where  and # are various notions of
convergence with respect to I is considered. In particular, it is proven that if  
is any notion of convergence weaker than →, and # is stronger than

⇒I ∪
QN−−→I∗ , then H̄⇐(F ,#) holds.

Actually, the function obtained in the proof of this observation witnesses
M̄⇐(F ,#), and we have the following.

Corollary (MK),[6]
Assume that I is an ideal on ω, and  is any notion of convergence weaker

than →, and # is stronger than ⇒I ∪
QN−−→I∗ , then M̄⇐(F ,#) holds.
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Repický’s results, continued
I : M⇒(F→I

,⇒I ) H⇒(F→I
,⇒I ) M⇒(F→I∗ ,⇒I∗ ) H⇒(F→I∗ ,⇒I∗ )

Fin ∈ X X X X
B ⊆ ω is coinfinite, then
〈B〉 ∈

X X X X

downward ≤RK closed X X
downward ≤RB closed X X X X
〈In〉n∈ω ∈ Iω , then

b
[∑

n∈ω In

]
∈

X X X X

J ∈ [I]ω , then
⋂
I ∈ X X X X

I, J ∈ I, J is a P-ideal, then
I ∨ J ∈

X X

〈In〉n∈ω ∈ Iω , then∨
{In : n ∈ ω} ∈

X

〈In〉n∈ω is an increasing se-
quence of ideals from I, then∨
{In : n ∈ ω} ∈

X X

〈In〉n∈ω is an increasing se-
quence of analytic ideals fromI,
then

∨
{In : n ∈ ω} ∈

X X X

〈In〉n∈ω is an increasing se-
quence of Borel ideals from I,
then

∨
{In : n ∈ ω} ∈

X X X X

I ∈ I, 〈In〉n∈ω ∈ Iω ,

b
[

I -
∏

n∈ω In

]
∈

X X

I ∈ I, 〈In〉n∈ω is a se-
quence of analytic ideals fromI,

b
[

I -
∏

n∈ω In

]
∈

X X X X

I ∈ I, 〈In〉n∈ω ∈ Iω ,
I -limn∈ω In ∈

X X

I ∈ I, 〈In〉n∈ω is a se-
quence of analytic ideals fromI,
I -limn∈ω In ∈

X X X X
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Open problems

Problem

Is there any possible condition, which implies that classic Egorov’s
statement (measurable version) does not hold for a given ideal in ZFC?

Problem

Are there any examples of ideals which prove that the classes of all ideals
satisfying M⇒(F→I

,⇒I ), H⇒(F→I
,⇒I ), M⇒(F→I∗ ,⇒I∗),

and H⇒(F→I∗ ,⇒I∗) are pairwise distinct?

Problem

Is there an ideal I such that H̄⇐
(
F→I

,
QN−−→I

)
does not hold?
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