Further generalizations and open problems

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Generalized Egorov's statement for ideals

Michał Korch

Faculty of Mathematics, Informatics, and Mechanics University of Warsaw

Hejnice, January 2019

Further generalizations and open problems 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Preliminaries and motivation: Classical Egorov's Theorem

Theorem (Egorov), [4] Given a sequence of Lebesgue measurable functions $\langle f_n \rangle_{n \in \omega}$, $f_n : [0, 1] \rightarrow [0, 1]$ which is pointwise convergent on [0, 1] and $\varepsilon > 0$, one can find a measurable set $A \subseteq [0, 1]$ with $m(A) \ge 1 - \varepsilon$ such that the sequence converges uniformly on A.

Further generalizations and open problems 000000

Preliminaries and motivation: Classical Egorov's Theorem

Theorem

(Egorov), [4]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Given a sequence of Lebesgue **measurable** functions $\langle f_n \rangle_{n \in \omega}$, $f_n: [0,1] \to [0,1]$ which is pointwise convergent on [0,1] and $\varepsilon > 0$, one can find a **measurable** set $A \subseteq [0,1]$ with $m(A) \ge 1 - \varepsilon$ such that the sequence converges uniformly on A.

Further generalizations and open problems 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Preliminaries and motivation: Classical Egorov's Theorem

Theorem (Egorov), [4] Given a sequence of Lebesgue **measurable** functions $\langle f_n \rangle_{n \in \omega}$, $f_n : [0,1] \rightarrow [0,1]$ which is **pointwise convergent** on [0,1] and $\varepsilon > 0$, one can find a **measurable** set $A \subseteq [0,1]$ with $m(A) \ge 1 - \varepsilon$ such that the sequence **converges uniformly** on A.

Further generalizations and open problems 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Generalized Egorov's statement is independent from ZFC

Generalized Egorov's statement

Given a sequence of functions $\langle f_n \rangle_{n \in \omega}$, $f_n \colon [0,1] \to [0,1]$ which is pointwise convergent on [0,1] and $\varepsilon > 0$, one can find a set $A \subseteq [0,1]$ with $m^*(A) \ge 1 - \varepsilon$ such that the sequence converges uniformly on A.

Generalized Egorov's statement is independent from ZFC

Generalized Egorov's statement

Given a sequence of functions $\langle f_n \rangle_{n \in \omega}$, $f_n \colon [0, 1] \to [0, 1]$ which is pointwise convergent on [0, 1] and $\varepsilon > 0$, one can find a set $A \subseteq [0, 1]$ with $m^*(A) \ge 1 - \varepsilon$ such that the sequence converges uniformly on A.

Theorem

(T. Weiss, 2004), [12]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In the Laver model, the generalized Egorov's statement holds.

Further generalizations and open problems 000000

Generalized Egorov's statement is independent from ZFC

Generalized Egorov's statement

Given a sequence of functions $\langle f_n \rangle_{n \in \omega}$, $f_n \colon [0, 1] \to [0, 1]$ which is pointwise convergent on [0, 1] and $\varepsilon > 0$, one can find a set $A \subseteq [0, 1]$ with $m^*(A) \ge 1 - \varepsilon$ such that the sequence converges uniformly on A.

Theorem

(T. Weiss, 2004), [12]

In the Laver model, the generalized Egorov's statement holds.

Theorem

(T. Weiss, 2004), [12]

Under (CH) the generalized Egorov's statement fails.

Further generalizations and open problems

Generalized Egorov's statement is independent from ZFC, continued

Theorem

(R. Pinciroli, 2006), [9]

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

If non $\mathcal{N} < \mathfrak{b}$, the generalized Egorov's statement holds.

Generalized Egorov's statement is independent from ZFC, continued

Theorem

(R. Pinciroli, 2006), [9]

If non $\mathcal{N} < \mathfrak{b}$, the generalized Egorov's statement holds.

Theorem

(R. Pinciroli, 2006), [9]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If non $\mathcal{N} = \mathfrak{d} = \mathfrak{c}$, the generalized Egorov's statement fails. Also if there exists a c-Lusin set and non $\mathcal{N} = \mathfrak{c}$, the generalized Egorov's statement fails.

Generalized Egorov's statement is independent from ZFC, continued

Theorem

(R. Pinciroli, 2006), [9]

If non $\mathcal{N} < \mathfrak{b}$, the generalized Egorov's statement holds.

Theorem

(R. Pinciroli, 2006), [9]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If non $\mathcal{N} = \mathfrak{d} = \mathfrak{c}$, the generalized Egorov's statement fails. Also if there exists a c-Lusin set and non $\mathcal{N} = \mathfrak{c}$, the generalized Egorov's statement fails.

Recall that a set *L* is a κ -Lusin set if for any meagre set *X*, $|L \cap X| < \kappa$, but $|L| \ge \kappa$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Convergence with respect to an ideal

Sequence convergence with respect to I

Given an ideal I on ω and a sequence $\langle x_n \rangle_{n \in \omega} \in \mathbb{R}^{\omega}$ we say that the sequence **converges** to a point $x \in \mathbb{R}$ with respect to $I(x_n \to_I x)$ if for every $\varepsilon > 0$,

$$\{n \in \omega \colon |x_n - x| > \varepsilon\} \in I.$$

Convergence with respect to an ideal

Sequence convergence with respect to I

Given an ideal I on ω and a sequence $\langle x_n \rangle_{n \in \omega} \in \mathbb{R}^{\omega}$ we say that the sequence **converges** to a point $x \in \mathbb{R}$ with respect to $I(x_n \to_I x)$ if for every $\varepsilon > 0$,

$$\{n \in \omega : |x_n - x| > \varepsilon\} \in I.$$

*I**-convergence

A sequence $\langle x_n \rangle_{n \in \omega} \in \mathbb{R}^{\omega}$ *I**-converges to a point $x \in \mathbb{R}$ $(x_n \to_{I^*} x)$ if there exists $C \in I$ such that the sequence $\langle x_n \rangle_{n \in (\omega \setminus C)}$ converges to x in the usual sense.

Convergence with respect to an ideal

Convergence of a sequence of functions with respect to I

We get different notions of convergence of a sequence $\langle f_n \rangle_{n \in \omega}$ of functions $[0,1] \rightarrow [0,1]$ on $A \subseteq [0,1]$ with respect to an ideal I on ω , which were introduced in [1] and [3]:

pointwise ideal, $f_n \rightarrow_I f$ if and only if

$$\forall_{\varepsilon>0}\forall_{x\in A} \{n\in\omega \colon |f_n(x)-f(x)|\geq \varepsilon\}\in I,$$

uniform ideal, $f_n \rightrightarrows_I f$ if and only if

$$\forall_{\varepsilon>0} \exists_{B\in I} \forall_{x\in A} \{ n \in \omega \colon |f_n(x) - f(x)| \ge \varepsilon \} \subseteq B.$$

Convergence with respect to an ideal, continued

*I**-convergence of a sequence of functions

In this approach we get the following notions of convergence of a sequence $\langle f_n \rangle_{n \in \omega}$ of functions $[0, 1] \rightarrow [0, 1]$ on $A \subseteq [0, 1]$: I^* -pointwise, $f_n \rightarrow_{I^*} f$ if and only if for all $x \in A$, there exists $M = \{m_i : i \in \omega\} \subseteq \omega, m_{i+1} > m_i \text{ for } i \in \omega \text{ such that} \omega \setminus M \in I \text{ and } f_{m_i}(x) \rightarrow f(x),$ I^* -uniform, $f_n \rightrightarrows_{I^*} f$ if and only if there exists $M = \{m_i : i \in \omega\} \subseteq \omega, m_{i+1} > m_i \text{ for } i \in \omega \text{ such that } \omega \setminus M \in I \text{ and } f_{m_i} \rightrightarrows f \text{ on } A.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Convergence with respect to an ideal, continued

If I, J are ideals on ω , then $I \lor J = \{A \cup B : A \in I \land B \in J\}$ is the least ideal containing I and J.

Convergence with respect to an ideal, continued

If I, J are ideals on ω , then $I \lor J = \{A \cup B : A \in I \land B \in J\}$ is the least ideal containing I and J.

J, *I*-convergence

The above notions can be further generalized. Let $J \subseteq I$ be ideals. If $A \subseteq [0,1]$ and $\langle f_n \rangle_{n \in \omega}$ is a sequence of functions $[0,1] \rightarrow [0,1]$, we have the following notions of convergence.

(J, I)-pointwise, $f_n \rightarrow_{J,I} f$ if and only if for all $x \in A$, there exists $N \in I$ such that for all $\varepsilon > 0$,

$$\{n \in \omega \colon |f_n(x) - f(x)| \ge \varepsilon\} \in J \lor \langle N \rangle,$$

(J, I)-uniform, $f_n \rightrightarrows_{J,I} f$ if and only if there exists $N \in I$ and $f_n \rightrightarrows_{J \lor \langle N \rangle} f$ on A.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Convergence with respect to an ideal, continued

If I, J are ideals on ω , then $I \lor J = \{A \cup B : A \in I \land B \in J\}$ is the least ideal containing I and J.

J, *I*-convergence

The above notions can be further generalized. Let $J \subseteq I$ be ideals. If $A \subseteq [0,1]$ and $\langle f_n \rangle_{n \in \omega}$ is a sequence of functions $[0,1] \rightarrow [0,1]$, we have the following notions of convergence.

(J, I)-pointwise, $f_n \rightarrow_{J,I} f$ if and only if for all $x \in A$, there exists $N \in I$ such that for all $\varepsilon > 0$,

$$\{n \in \omega \colon |f_n(x) - f(x)| \ge \varepsilon\} \in J \lor \langle N \rangle,$$

(J, I)-uniform, $f_n \rightrightarrows_{J,I} f$ if and only if there exists $N \in I$ and $f_n \rightrightarrows_{J \lor \langle N \rangle} f$ on A.

Notice that $\rightarrow_{I,I} = \rightarrow_I$ and $\rightrightarrows_{I,I} = \rightrightarrows_I$. Moreover, $\rightarrow_{\mathsf{Fin},I} = \rightarrow_{I^*}$, and $\rightrightarrows_{\mathsf{Fin},I} = \rightrightarrows_{I^*}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Convergence with respect to an ideal, continued

Therefore we have the following implications between notions of convergence for ideals $J \subseteq I$.

$$\begin{array}{cccc} \rightarrow_{\mathsf{Fin}} & \Rightarrow & \rightarrow_{I^*} & \Rightarrow & \rightarrow_{J,I} & \Rightarrow & \rightarrow_{I} \\ \uparrow & & \uparrow & & \uparrow & & \uparrow \\ \rightrightarrows_{\mathsf{Fin}} & \Rightarrow & \rightrightarrows_{I^*} & \Rightarrow & \rightrightarrows_{J,I} & \Rightarrow & \rightrightarrows_{I} \end{array}$$

Further generalizations and open problems 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Egorov's statement for ideals: countably generated ideals

An ideal *I* is countably generated (satisfies the chain condition) if there exists a sequence $\langle C_i \rangle_{i \in \omega}$ of elements of *I* such that $C_i \subseteq C_{i+1}$ for all $i \in \omega$ and for every $A \in I$, there exists $k \in \omega$ such that $A \subseteq C_k$.

Egorov's statement for ideals: countably generated ideals

An ideal *I* is countably generated (satisfies the chain condition) if there exists a sequence $\langle C_i \rangle_{i \in \omega}$ of elements of *I* such that $C_i \subseteq C_{i+1}$ for all $i \in \omega$ and for every $A \in I$, there exists $k \in \omega$ such that $A \subseteq C_k$.

Proposition

If *I* is a countably generated ideal on ω , and $f_n: [0,1] \to [0,1]$, $n \in \omega$ are Lebesgue-measurable functions such that $f_n \to_I 0$ and $\varepsilon > 0$, then there exists a measurable set $B \subseteq [0,1]$ such that $m(B) \leq \varepsilon$ and $f_n \rightrightarrows_I 0$ on $[0,1] \setminus B$.

Egorov's statement for ideals: countably generated ideals

An ideal *I* is countably generated (satisfies the chain condition) if there exists a sequence $\langle C_i \rangle_{i \in \omega}$ of elements of *I* such that $C_i \subseteq C_{i+1}$ for all $i \in \omega$ and for every $A \in I$, there exists $k \in \omega$ such that $A \subseteq C_k$.

Proposition

If *I* is a countably generated ideal on ω , and $f_n: [0,1] \to [0,1]$, $n \in \omega$ are Lebesgue-measurable functions such that $f_n \to_I 0$ and $\varepsilon > 0$, then there exists a measurable set $B \subseteq [0,1]$ such that $m(B) \leq \varepsilon$ and $f_n \rightrightarrows_I 0$ on $[0,1] \setminus B$.

Proposition

If *I* is a countably generated ideal on ω , and $f_n: [0,1] \to [0,1]$, $n \in \omega$ are Lebesgue-measurable functions such that $f_n \to_{I^*} 0$ and $\varepsilon > 0$, then there exists a measurable set $B \subseteq [0,1]$ such that $m(B) \leq \varepsilon$ and $f_n \rightrightarrows_{I^*} 0$ on $[0,1] \setminus B$.

Egorov's statement for ideals: countably generated ideals

An ideal *I* is countably generated (satisfies the chain condition) if there exists a sequence $\langle C_i \rangle_{i \in \omega}$ of elements of *I* such that $C_i \subseteq C_{i+1}$ for all $i \in \omega$ and for every $A \in I$, there exists $k \in \omega$ such that $A \subseteq C_k$.

Proposition

If *I* is a countably generated ideal on ω , and $f_n: [0,1] \to [0,1]$, $n \in \omega$ are Lebesgue-measurable functions such that $f_n \to_I 0$ and $\varepsilon > 0$, then there exists a measurable set $B \subseteq [0,1]$ such that $m(B) \leq \varepsilon$ and $f_n \rightrightarrows_I 0$ on $[0,1] \setminus B$.

Proposition

If *I* is a countably generated ideal on ω , and $f_n: [0,1] \to [0,1]$, $n \in \omega$ are Lebesgue-measurable functions such that $f_n \to_{I^*} 0$ and $\varepsilon > 0$, then there exists a measurable set $B \subseteq [0,1]$ such that $m(B) \leq \varepsilon$ and $f_n \rightrightarrows_{I^*} 0$ on $[0,1] \setminus B$.

But there are only two countably generated ideals on ω up to isomorphism...

・ロト・四ト・モート ヨー うへの

Egorov's statement for ideals: Fin $^{\alpha}$

Given an ideal I on ω and a sequence $\langle I_n \rangle_{n \in \omega}$ of ideals on ω , let $I - \prod_{n \in \omega} I_n$ be the following ideal. For any $A \subseteq \omega^2$,

$$A \in I - \prod_{n \in \omega} I_n \Leftrightarrow \{n \in \omega \colon A_{(n)} \notin I_n\} \in I,$$

where $A_{(n)} = \{m \in \omega : \langle n, m \rangle \in A\}$. If $I_n = J$ for any $n \in \omega$, we denote $I - \prod_{n \in \omega} I_n$ by $I \times J$.

Egorov's statement for ideals: Fin $^{\alpha}$

Given an ideal I on ω and a sequence $\langle I_n \rangle_{n \in \omega}$ of ideals on ω , let $I - \prod_{n \in \omega} I_n$ be the following ideal. For any $A \subseteq \omega^2$,

$$A \in I - \prod_{n \in \omega} I_n \Leftrightarrow \{n \in \omega \colon A_{(n)} \notin I_n\} \in I,$$

where $A_{(n)} = \{m \in \omega : \langle n, m \rangle \in A\}$. If $I_n = J$ for any $n \in \omega$, we denote $I - \prod_{n \in \omega} I_n$ by $I \times J$. Fix a bijection $b : \omega^2 \to \omega$ and a bijection $a_\beta : \omega \to \beta \setminus \{0\}$ for any limit $\beta < \omega_1$. The **ideals Fin**^{α}, $\alpha < \omega_1$, are defined inductively in the following way. Let Fin¹ = Fin be the ideal of finite subsets of ω . We set

$$\operatorname{Fin}^{\alpha+1} = \{ b[A] \colon A \in \operatorname{Fin} \times \operatorname{Fin}^{\alpha} \},\$$

and for limit $\beta < \omega_1$, let

$$\operatorname{Fin}^{\beta} = \left\{ b[A] \colon A \in \operatorname{Fin-} \prod_{i \in \omega} \operatorname{Fin}^{a_{\beta}(i)} \right\}$$

٠

Further generalizations and open problems 000000

Egorov's statement for ideals: Fin $^{\alpha}$

Theorem

(N. Mrożek, 2010), [8]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If $I = \operatorname{Fin}^{\alpha}$ for $\alpha < \omega_1$, and $f_n \colon [0,1] \to [0,1]$, $n \in \omega$ are Lebesgue-measurable functions such that $f_n \to_I 0$ and $\varepsilon > 0$, then there exists a measurable set $B \subseteq [0,1]$ such that $m(B) \leq \varepsilon$ and $f_n \rightrightarrows_I 0$ on $[0,1] \setminus B$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Analytic P-ideals

An ideal *I* is **analytic** if $\{\chi_C : C \in I\}$ is analytic as a subset of 2^{ω} .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Analytic P-ideals

An ideal *I* is **analytic** if $\{\chi_C : C \in I\}$ is analytic as a subset of 2^{ω} . An ideal *I* is a **P-ideal** if for any sequence $\langle A_i \rangle_{i \in \omega} \in I^{\omega}$ of mutually disjoint sets, there exists a sequence $\langle B_i \rangle_{i \in \omega}$ such that $A_i \triangle B_i$ is finite for all $i \in \omega$, and $\bigcup_{i \in \omega} B_i \in I$.

Analytic P-ideals

An ideal *I* is **analytic** if $\{\chi_C : C \in I\}$ is analytic as a subset of 2^{ω} . An ideal *I* is a **P-ideal** if for any sequence $\langle A_i \rangle_{i \in \omega} \in I^{\omega}$ of mutually disjoint sets, there exists a sequence $\langle B_i \rangle_{i \in \omega}$ such that $A_i \triangle B_i$ is finite for all $i \in \omega$, and $\bigcup_{i \in \omega} B_i \in I$. By the well-known result of Solecki ([11]) if *I* is an analytic *P*-ideal, then

 $I = \mathsf{Exh}(\phi)$, where ϕ is a lower semicontinuous submeasure.

Analytic P-ideals

An ideal *I* is **analytic** if $\{\chi_C : C \in I\}$ is analytic as a subset of 2^{ω} . An ideal *I* is a **P-ideal** if for any sequence $\langle A_i \rangle_{i \in \omega} \in I^{\omega}$ of mutually disjoint sets, there exists a sequence $\langle B_i \rangle_{i \in \omega}$ such that $A_i \triangle B_i$ is finite for all $i \in \omega$, and $\bigcup_{i \in \omega} B_i \in I$. By the well-known result of Solecki ([11]) if *I* is an analytic *P*-ideal, then $I = \text{Exh}(\phi)$, where ϕ is a lower semicontinuous submeasure. A function $\phi: 2^{\omega} \to [0, \infty]$ is a lower semicontinuous submeasure if it satisfies the following conditions:

(1)
$$\phi(\emptyset) = 0$$
,
(2) $\phi(A) \le \phi(A \cup B) \le \phi(A) + \phi(B)$, for any $A, B \subseteq \omega$,
(3) $\phi(A) = \lim_{n \to \omega} \phi(A \cap n)$, for any $A \subseteq \omega$,
and,

$$\mathsf{Exh}(\phi) = \{A \subseteq \omega : \lim_{n \to \infty} \phi(A \setminus n) = 0\}.$$

Further generalizations and open problems

Analytic P-ideals: convergence

Let I be an analytic P-ideal. Fix a lower semicontinuous submeasure ϕ such that $I = \text{Exh}(\phi)$.

Analytic P-ideals: convergence

Let I be an analytic P-ideal. Fix a lower semicontinuous submeasure ϕ such that $I = \text{Exh}(\phi)$.

Convergence with respect to an analytic P-ideal

pointwise ideal, $f_n \rightarrow_I f$ if and only if

$$\forall_{\varepsilon>0}\forall_{x\in A}\exists_{k\in\omega}\phi(\{n\in\omega\colon |f_n(x)-f(x)|\geq\varepsilon\}\setminus k)<\varepsilon,$$

uniform ideal, $f_n \rightrightarrows_I 0$ if and only if

$$\forall_{\varepsilon>0} \exists_{k\in\omega} \phi\left(\left\{n\in\omega\colon \sup_{x\in A} |f_n(x)-f(x)|\geq \varepsilon\right\}\setminus k\right)<\varepsilon.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Analytic P-ideals: convergence

Let I be an analytic P-ideal. Fix a lower semicontinuous submeasure ϕ such that $I = \text{Exh}(\phi)$.

Convergence with respect to an analytic P-ideal

pointwise ideal, $f_n \rightarrow_I f$ if and only if

$$\forall_{\varepsilon>0}\forall_{x\in A}\exists_{k\in\omega}\phi(\{n\in\omega\colon |f_n(x)-f(x)|\geq\varepsilon\}\setminus k)<\varepsilon,$$

equi-ideal, $f_n \rightarrow f$ if and only if

$$\forall_{\varepsilon>0} \exists_{k\in\omega} \forall_{x\in A} \phi(\{n\in\omega \colon |f_n(x)-f(x)|\geq \varepsilon\}\setminus k) < \varepsilon,$$

uniform ideal, $f_n \rightrightarrows_I 0$ if and only if

$$\forall_{\varepsilon>0} \exists_{k\in\omega} \phi\left(\left\{n\in\omega\colon \sup_{x\in A} |f_n(x)-f(x)|\geq \varepsilon\right\}\setminus k\right)<\varepsilon.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Egorov's statement for ideals: analytic P-ideals

Theorem

(N. Mrożek, 2009), [7]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If *I* is an analytic P-ideal, and $f_n: [0,1] \to [0,1]$, $n \in \omega$ are Lebesgue-measurable functions such that $f_n \to_I 0$ and $\varepsilon > 0$, then there exists a measurable set $B \subseteq [0,1]$ such that $m(B) \leq \varepsilon$ and $f_n \twoheadrightarrow_I 0$ on $[0,1] \setminus B$.

Egorov's statement for ideals: analytic P-ideals

Theorem

(N. Mrożek, 2009), [7]

If *I* is an analytic P-ideal, and $f_n: [0,1] \to [0,1]$, $n \in \omega$ are Lebesgue-measurable functions such that $f_n \to_I 0$ and $\varepsilon > 0$, then there exists a measurable set $B \subseteq [0,1]$ such that $m(B) \leq \varepsilon$ and $f_n \twoheadrightarrow_I 0$ on $[0,1] \setminus B$.

Theorem

(N. Mrożek, 2009), [7]

If I is an analytic P-ideal which is not countably generated and non-pathological. Then there exists a sequence $f_n: [0,1] \to [0,1]$, $n \in \omega$ of Lebesgue-measurable functions such that $f_n \to_I 0$ and $\varepsilon > 0$, such that for every a measurable set $B \subseteq [0,1]$ with $m(B) \leq \varepsilon$ and $f_n \not\rightrightarrows_I 0$ on $[0,1] \setminus B$.

Egorov's statement for ideals: analytic P-ideals

Theorem

(N. Mrożek, 2009), [7]

If *I* is an analytic P-ideal, and $f_n: [0,1] \to [0,1]$, $n \in \omega$ are Lebesgue-measurable functions such that $f_n \to_I 0$ and $\varepsilon > 0$, then there exists a measurable set $B \subseteq [0,1]$ such that $m(B) \leq \varepsilon$ and $f_n \twoheadrightarrow_I 0$ on $[0,1] \setminus B$.

Theorem

(N. Mrożek, 2009), [7]

If *I* is an analytic P-ideal which is not countably generated and non-pathological. Then there exists a sequence $f_n: [0,1] \rightarrow [0,1]$, $n \in \omega$ of Lebesgue-measurable functions such that $f_n \rightarrow_I 0$ and $\varepsilon > 0$, such that for every a measurable set $B \subseteq [0,1]$ with $m(B) \leq \varepsilon$ and $f_n \not\rightrightarrows_I 0$ on $[0,1] \setminus B$.

A submeasure ϕ is non-pathological if it is equal to pointwise supremum of measures dominated by itself. An analityc *P*-ideal is non-pathological if $I = \text{Exh}(\phi)$ for a non-pathological lower semicontinuous submeasure ϕ . Preliminaries and motivation

Generalization of Pinciroli's method • 0 0 0 Applications 0000000000 Further generalizations and open problems

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The method

Further generalizations and open problems

The method

Crucial lemma

(MK), [5]

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Assume that non $(\mathcal{N}) < \mathfrak{b}$. Let $\Phi \in (\omega^{\omega})^{[0,1]}$. Then for any $\varepsilon > 0$, there exists $A \subseteq [0,1]$ such that $m^*(A) \ge 1 - \varepsilon$ and Φ is bounded on A.

Further generalizations and open problems

The method

Crucial lemma

(MK), [5]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Assume that non $(\mathcal{N}) < \mathfrak{b}$. Let $\Phi \in (\omega^{\omega})^{[0,1]}$. Then for any $\varepsilon > 0$, there exists $A \subseteq [0,1]$ such that $m^*(A) \ge 1 - \varepsilon$ and Φ is bounded on A.

Proof: We follow the arguments of Pinciroli (see [9]).

Further generalizations and open problems 000000

The method

Crucial lemma

(MK), [5]

Assume that non(\mathcal{N}) < \mathfrak{b} . Let $\Phi \in (\omega^{\omega})^{[0,1]}$. Then for any $\varepsilon > 0$, there exists $A \subseteq [0,1]$ such that $m^*(A) \ge 1 - \varepsilon$ and Φ is bounded on A.

Proof: We follow the arguments of Pinciroli (see [9]). Assume that non(\mathcal{N}) < b. Notice that this statement holds for example in a model obtained by \aleph_2 -iteration with countable support of Laver forcing (see e.g. [2]). Also it can be easily proven that under this assumption there exists a set $Y \subseteq [0,1]$ of cardinality less that b such that $m^*(Y) = 1$. Indeed, if $N \subseteq [0,1]$ is a set of positive outer measure with $|N| < \mathfrak{b}$, then let $Y = \{x + y : x \in N, y \in \mathbb{Q}\}$, where + denotes addition modulo 1. Then Y has outer measure 1 under the Zero-One Law.

Further generalizations and open problems 000000

The method

Crucial lemma

(MK), [5]

Assume that non $(\mathcal{N}) < \mathfrak{b}$. Let $\Phi \in (\omega^{\omega})^{[0,1]}$. Then for any $\varepsilon > 0$, there exists $A \subseteq [0,1]$ such that $m^*(A) \ge 1 - \varepsilon$ and Φ is bounded on A.

Proof: We follow the arguments of Pinciroli (see [9]). Assume that non(\mathcal{N}) < b. Notice that this statement holds for example in a model obtained by \aleph_2 -iteration with countable support of Laver forcing (see e.g. [2]). Also it can be easily proven that under this assumption there exists a set $Y \subseteq [0,1]$ of cardinality less that b such that $m^*(Y) = 1$. Indeed, if $N \subseteq [0,1]$ is a set of positive outer measure with $|N| < \mathfrak{b}$, then let $Y = \{x + y : x \in N, y \in \mathbb{Q}\}$, where + denotes addition modulo 1. Then Y has outer measure 1 under the Zero-One Law.

Therefore, every function $\varphi : [0,1] \to \omega^{\omega}$ maps Y onto a K_{σ} -set, where K_{σ} denotes the σ -ideal of subsets of ω^{ω} generated by the compact (equivalently bounded) sets. We get that $\Phi[Y] \in K_{\sigma}$. Assume that $\Phi[Y] \subseteq \bigcup_{n \in \omega} B_n$ with each B_n bounded. Let $A_n = \Phi^{-1}[\bigcup_{i=0}^n B_i]$. Therefore, $\Phi[A_n]$ is bounded, and for any $\varepsilon > 0$, there exists $n \in \omega$ such that $m^*(A_n) \ge 1 - \varepsilon$.

Witness function o

For a sequence of functions $f_n : [0,1] \to [0,1]$ and subsets $A \subseteq [0,1]$, we consider a notion of convergence $f_n \hookrightarrow f$ on A. We assume that if $B \subseteq A$ and $f_n \hookrightarrow f$ on A, then $f_n \hookrightarrow f$ on B.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Witness function o

For a sequence of functions $f_n : [0,1] \to [0,1]$ and subsets $A \subseteq [0,1]$, we consider a notion of convergence $f_n \oplus f$ on A. We assume that if $B \subseteq A$ and $f_n \oplus f$ on A, then $f_n \oplus f$ on B. We write $f_n \oplus f$ provided that $f_n \oplus f$ on [0,1]. Let $\mathcal{F} \subseteq \{\langle f_n \rangle_{n \in \omega} : \forall_{n \in \omega} f_n : [0,1] \to [0,1]\}$ be an arbitrary family of sequences of functions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Witness function o

For a sequence of functions $f_n : [0,1] \to [0,1]$ and subsets $A \subseteq [0,1]$, we consider a notion of convergence $f_n \hookrightarrow f$ on A. We assume that if $B \subseteq A$ and $f_n \hookrightarrow f$ on A, then $f_n \hookrightarrow f$ on B. We write $f_n \hookrightarrow f$ provided that $f_n \hookrightarrow f$ on [0,1]. Let $\mathcal{F} \subseteq \{\langle f_n \rangle_{n \in \omega} : \forall_{n \in \omega} f_n : [0,1] \to [0,1]\}$ be an arbitrary family of sequences of functions.

Hypotheses between \mathcal{F} and \hookrightarrow

 $(H^{\Rightarrow}(\mathcal{F}, \hookrightarrow))$ There exists $o : \mathcal{F} \to (\omega^{\omega})^{[0,1]}$ such that for every $F \in \mathcal{F}$ and every $A \subseteq [0,1]$ if o(F)[A] is bounded in (ω^{ω}, \leq) , then $F \hookrightarrow 0$ on A.

Witness function o

For a sequence of functions $f_n : [0,1] \to [0,1]$ and subsets $A \subseteq [0,1]$, we consider a notion of convergence $f_n \hookrightarrow f$ on A. We assume that if $B \subseteq A$ and $f_n \hookrightarrow f$ on A, then $f_n \hookrightarrow f$ on B. We write $f_n \hookrightarrow f$ provided that $f_n \hookrightarrow f$ on [0,1]. Let $\mathcal{F} \subseteq \{\langle f_n \rangle_{n \in \omega} : \forall_{n \in \omega} f_n : [0,1] \to [0,1]\}$ be an arbitrary family of sequences of functions.

Hypotheses between \mathcal{F} and \hookrightarrow

 $\begin{array}{l} (H^{\Rightarrow}(\mathcal{F}, \hookrightarrow)) \ \, \text{There exists } o: \mathcal{F} \to (\omega^{\omega})^{[0,1]} \text{ such that for every } F \in \mathcal{F} \\ \text{ and every } A \subseteq [0,1] \text{ if } o(F)[A] \text{ is bounded in } (\omega^{\omega}, \leq), \\ \text{ then } F \ominus 0 \text{ on } A. \\ (H^{\Leftarrow}(\mathcal{F}, \ominus)) \ \, \text{There exists cofinal } o: \mathcal{F} \to (\omega^{\omega})^{[0,1]} \text{ such that for every} \\ F \in \mathcal{F} \text{ and every } A \subseteq [0,1], \text{ if } F \ominus 0 \text{ on } A, \text{ then } o(F)[A] \\ \text{ is bounded in } (\omega^{\omega}, \leq). \end{array}$

Witness function o

For a sequence of functions $f_n : [0,1] \to [0,1]$ and subsets $A \subseteq [0,1]$, we consider a notion of convergence $f_n \hookrightarrow f$ on A. We assume that if $B \subseteq A$ and $f_n \hookrightarrow f$ on A, then $f_n \hookrightarrow f$ on B. We write $f_n \hookrightarrow f$ provided that $f_n \hookrightarrow f$ on [0,1]. Let $\mathcal{F} \subseteq \{\langle f_n \rangle_{n \in \omega} : \forall_{n \in \omega} f_n : [0,1] \to [0,1]\}$ be an arbitrary family of sequences of functions.

Hypotheses between \mathcal{F} and \hookrightarrow

 $\begin{array}{l} (H^{\Rightarrow}(\mathcal{F}, \hookrightarrow)) \ \, \text{There exists } o: \mathcal{F} \to (\omega^{\omega})^{[0,1]} \text{ such that for every } F \in \mathcal{F} \\ \text{ and every } A \subseteq [0,1] \text{ if } o(F)[A] \text{ is bounded in } (\omega^{\omega}, \leq), \\ \text{ then } F \oplus 0 \text{ on } A. \\ (H^{\Leftarrow}(\mathcal{F}, \oplus)) \ \, \text{There exists cofinal } o: \mathcal{F} \to (\omega^{\omega})^{[0,1]} \text{ such that for every} \\ F \in \mathcal{F} \text{ and every } A \subseteq [0,1], \text{ if } F \oplus 0 \text{ on } A, \text{ then } o(F)[A] \\ \text{ is bounded in } (\omega^{\omega}, \leq). \end{array}$

We say that a function $o: X \to P$ from a set X into a partially ordered set P is cofinal if for every $p \in P$ there exists $x \in X$ such that $p \leq o(x)$.

Further generalizations and open problems

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The positive theorem

Theorem(MK), [5]Assume that non(\mathcal{N}) < \mathfrak{b} , and $H^{\Rightarrow}(\mathcal{F}, \hookrightarrow)$. Then for any $\langle f_n \rangle_{n \in \omega} \in \mathcal{F}$ and any $\varepsilon > 0$, there exists $A \subseteq [0, 1]$ such that $m^*(A) \ge 1 - \varepsilon$ and $f_n \hookrightarrow 0$ on A.

Further generalizations and open problems 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The positive theorem

Theorem(MK), [5]Assume that non(\mathcal{N}) < \mathfrak{b} , and $H^{\Rightarrow}(\mathcal{F}, \mathfrak{s})$. Then for any $\langle f_n \rangle_{n \in \omega} \in \mathcal{F}$ and any $\varepsilon > 0$, there exists $A \subseteq [0, 1]$ such that $m^*(A) \ge 1 - \varepsilon$ and $f_n \mathfrak{s} 0$ on A.

Proof: Apply the crucial lemma for $o(\langle f_n \rangle_{n \in \omega})$ given by $H^{\Rightarrow}(\mathcal{F}, \hookrightarrow)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The negative theorem

There exists a model of ZFC in which $non(\mathcal{N}) = \mathfrak{c}$, and there exists \mathfrak{c} -Lusin set. It suffices to iterate \aleph_2 -times Cohen forcing with finite supports over a model of GCH (see [2, Model 7.5.8 and Lemma 8.2.6]).

The negative theorem

There exists a model of ZFC in which $non(\mathcal{N}) = \mathfrak{c}$, and there exists \mathfrak{c} -Lusin set. It suffices to iterate \aleph_2 -times Cohen forcing with finite supports over a model of GCH (see [2, Model 7.5.8 and Lemma 8.2.6]).

Theorem

(MK), [5]

Assume that non(\mathcal{N}) = c, and that there exists a c-Lusin set. If $H^{\Leftarrow}(\mathcal{F}, \hookrightarrow)$ holds, then there exist $\langle f_n \rangle_{n \in \omega} \in \mathcal{F}$ and $\varepsilon > 0$ such that for all $A \subseteq [0, 1]$ with $m^*(A) \ge 1 - \varepsilon$, $f_n \nleftrightarrow 0$ on A.

The negative theorem

There exists a model of ZFC in which $non(\mathcal{N}) = \mathfrak{c}$, and there exists \mathfrak{c} -Lusin set. It suffices to iterate \aleph_2 -times Cohen forcing with finite supports over a model of GCH (see [2, Model 7.5.8 and Lemma 8.2.6]).

Theorem

(MK), [5]

Assume that non(\mathcal{N}) = \mathfrak{c} , and that there exists a \mathfrak{c} -Lusin set. If $H^{\Leftarrow}(\mathcal{F}, \hookrightarrow)$ holds, then there exist $\langle f_n \rangle_{n \in \omega} \in \mathcal{F}$ and $\varepsilon > 0$ such that for all $A \subseteq [0, 1]$ with $m^*(A) \ge 1 - \varepsilon$, $f_n \nleftrightarrow 0$ on A.

Proof: Again, we generalize some arguments of Pinciroli (see [9]). Let $Z \subseteq \omega^{\omega}$ be a c-Lusin set. Since every compact set is meagre in ω^{ω} , every K_{σ} set is also meagre. Therefore, if $A \subseteq Z$ is a K_{σ} set, then $|A| < \mathfrak{c}$. Let $o : \mathcal{F} \to (\omega^{\omega})^{[0,1]}$ be a cofinal function given by $H^{\leftarrow}(\mathcal{F}, \hookrightarrow)$. Let φ be a bijection between [0, 1] and Z. Finally, let $\langle f_n \rangle_{n \in \omega} = F \in \mathcal{F}$ be such that $o(F) \geq \varphi$.

The negative theorem

There exists a model of ZFC in which $non(\mathcal{N}) = \mathfrak{c}$, and there exists \mathfrak{c} -Lusin set. It suffices to iterate \aleph_2 -times Cohen forcing with finite supports over a model of GCH (see [2, Model 7.5.8 and Lemma 8.2.6]).

Theorem

(MK), [5]

Assume that non(\mathcal{N}) = \mathfrak{c} , and that there exists a \mathfrak{c} -Lusin set. If $H^{\Leftarrow}(\mathcal{F}, \hookrightarrow)$ holds, then there exist $\langle f_n \rangle_{n \in \omega} \in \mathcal{F}$ and $\varepsilon > 0$ such that for all $A \subseteq [0, 1]$ with $m^*(A) \ge 1 - \varepsilon$, $f_n \nleftrightarrow 0$ on A.

Proof: Again, we generalize some arguments of Pinciroli (see [9]). Let $Z \subseteq \omega^{\omega}$ be a c-Lusin set. Since every compact set is meagre in ω^{ω} , every K_{σ} set is also meagre. Therefore, if $A \subseteq Z$ is a K_{σ} set, then $|A| < \mathfrak{c}$. Let $o : \mathcal{F} \to (\omega^{\omega})^{[0,1]}$ be a cofinal function given by $H^{\leftarrow}(\mathcal{F}, \hookrightarrow)$. Let φ be a bijection between [0, 1] and Z. Finally, let $\langle f_n \rangle_{n \in \omega} = F \in \mathcal{F}$ be such that $o(F) \ge \varphi$. To get a contradiction, assume that for every $i \in \omega$, there exists $A_i \subseteq [0, 1]$ such that $m^*(A_i) \ge 1 - 1/2^i$ and $f_n \leftrightarrow 0$ on A_i . Let $A = \bigcup_{i \in \omega} A_i$. For any $i \in \omega$, $o(F)[A_i]$ is bounded because $f_n \leftrightarrow 0$ on A_i , and so $\varphi[A_i]$ is bounded since $o(F) \ge \varphi$.

The negative theorem

There exists a model of ZFC in which $non(\mathcal{N}) = \mathfrak{c}$, and there exists \mathfrak{c} -Lusin set. It suffices to iterate \aleph_2 -times Cohen forcing with finite supports over a model of GCH (see [2, Model 7.5.8 and Lemma 8.2.6]).

Theorem

(MK), [5]

Assume that non(\mathcal{N}) = \mathfrak{c} , and that there exists a \mathfrak{c} -Lusin set. If $H^{\Leftarrow}(\mathcal{F}, \hookrightarrow)$ holds, then there exist $\langle f_n \rangle_{n \in \omega} \in \mathcal{F}$ and $\varepsilon > 0$ such that for all $A \subseteq [0, 1]$ with $m^*(A) \ge 1 - \varepsilon$, $f_n \nleftrightarrow 0$ on A.

Proof: Again, we generalize some arguments of Pinciroli (see [9]). Let $Z \subseteq \omega^{\omega}$ be a c-Lusin set. Since every compact set is meagre in ω^{ω} , every K_{σ} set is also meagre. Therefore, if $A \subseteq Z$ is a K_{σ} set, then $|A| < \mathfrak{c}$. Let $o : \mathcal{F} \to (\omega^{\omega})^{[0,1]}$ be a cofinal function given by $H^{\leftarrow}(\mathcal{F}, \oplus)$. Let φ be a bijection between [0, 1]and Z. Finally, let $\langle f_n \rangle_{n \in \omega} = F \in \mathcal{F}$ be such that $o(F) \ge \varphi$. To get a contradiction, assume that for every $i \in \omega$, there exists $A_i \subseteq [0, 1]$ such that $m^*(A_i) \ge 1 - 1/2^i$ and $f_n \oplus 0$ on A_i . Let $A = \bigcup_{i \in \omega} A_i$. For any $i \in \omega$, $o(F)[A_i]$ is bounded because $f_n \oplus 0$ on A_i , and so $\varphi[A_i]$ is bounded since $o(F) \ge \varphi$. Therefore, $\varphi[A] \in K_{\sigma}$ and $|A| = |\varphi[A]| < \mathfrak{c}$ because $\varphi[A] \subseteq Z$. This is a contradiction because $m^*(A) = 1$ and $\operatorname{non}(\mathcal{N}) = \mathfrak{c}$.

Further generalizations and open problems 000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Fin ideal

Let $\langle f_n \rangle_{n \in \omega}$ be such that $f_n \to 0$. Set $\varepsilon_n = 1/2^n$, $n \in \omega$. Consider $\mathcal{F} = \{ \langle f_n \rangle_{n \in \omega} : \forall_{n \in \omega} f_n : [0, 1] \to [0, 1] \land f_n \to 0 \}$ and $\mathfrak{P} = \rightrightarrows$. Define $o : \mathcal{F} \to (\omega^{\omega})^{[0,1]}$ in the following way. For $F = \langle f_n \rangle_{n \in \omega}$, let

 $o(F)(x)(n) = \min\{m \in \omega \colon \forall_{l \ge m} f_l(x) \le \varepsilon_n\}.$

Further generalizations and open problems 000000

A D N A 目 N A E N A E N A B N A C N

Fin ideal

Let $\langle f_n \rangle_{n \in \omega}$ be such that $f_n \to 0$. Set $\varepsilon_n = 1/2^n$, $n \in \omega$. Consider $\mathcal{F} = \{ \langle f_n \rangle_{n \in \omega} : \forall_{n \in \omega} f_n : [0, 1] \to [0, 1] \land f_n \to 0 \}$ and $\mathfrak{P} = \rightrightarrows$. Define $o : \mathcal{F} \to (\omega^{\omega})^{[0,1]}$ in the following way. For $F = \langle f_n \rangle_{n \in \omega}$, let

 $o(F)(x)(n) = \min\{m \in \omega \colon \forall_{l \ge m} f_l(x) \le \varepsilon_n\}.$

It is easy to see that the above function o proves that both $H^{\Leftarrow}(\mathcal{F}_{\rightarrow}, \rightrightarrows)$ and $H^{\Rightarrow}(\mathcal{F}_{\rightarrow}, \rightrightarrows)$ hold, and thus by positive and negative theorems we obtain the reasoning and the results of Pinciroli.

Fin ideal

Let $\langle f_n \rangle_{n \in \omega}$ be such that $f_n \to 0$. Set $\varepsilon_n = 1/2^n$, $n \in \omega$. Consider $\mathcal{F} = \{ \langle f_n \rangle_{n \in \omega} : \forall_{n \in \omega} f_n : [0, 1] \to [0, 1] \land f_n \to 0 \}$ and $\mathfrak{P} = \rightrightarrows$. Define $o : \mathcal{F} \to (\omega^{\omega})^{[0,1]}$ in the following way. For $F = \langle f_n \rangle_{n \in \omega}$, let

 $o(F)(x)(n) = \min\{m \in \omega : \forall_{l \ge m} f_l(x) \le \varepsilon_n\}.$

It is easy to see that the above function o proves that both $H^{\Leftarrow}(\mathcal{F}_{\rightarrow}, \rightrightarrows)$ and $H^{\Rightarrow}(\mathcal{F}_{\rightarrow}, \rightrightarrows)$ hold, and thus by positive and negative theorems we obtain the reasoning and the results of Pinciroli.

Theorem

(R. Pinciroli, 2006), [9]

If non $\mathcal{N} < \mathfrak{b}$, the generalized Egorov's statement holds.

Theorem

(R. Pinciroli, 2006), [9]

If there exists a c-Lusin set and non $\boldsymbol{\mathcal{N}}=c,$ the generalized Egorov's statement fails.

Fin ideal

Let $\langle f_n \rangle_{n \in \omega}$ be such that $f_n \to 0$. Set $\varepsilon_n = 1/2^n$, $n \in \omega$. Consider $\mathcal{F} = \{ \langle f_n \rangle_{n \in \omega} : \forall_{n \in \omega} f_n : [0, 1] \to [0, 1] \land f_n \to 0 \}$ and $\mathfrak{P} = \rightrightarrows$. Define $o : \mathcal{F} \to (\omega^{\omega})^{[0,1]}$ in the following way. For $F = \langle f_n \rangle_{n \in \omega}$, let

 $o(F)(x)(n) = \min\{m \in \omega \colon \forall_{l \ge m} f_l(x) \le \varepsilon_n\}.$

It is easy to see that the above function o proves that both $H^{\Leftarrow}(\mathcal{F}_{\rightarrow}, \rightrightarrows)$ and $H^{\Rightarrow}(\mathcal{F}_{\rightarrow}, \rightrightarrows)$ hold, and thus by positive and negative theorems we obtain the reasoning and the results of Pinciroli.

Theorem

(R. Pinciroli, 2006), [9]

If non $\mathcal{N} < \mathfrak{b}$, the generalized Egorov's statement holds.

Theorem

(R. Pinciroli, 2006), [9]

If there exists a c-Lusin set and non $\boldsymbol{\mathcal{N}}=c,$ the generalized Egorov's statement fails.

Let from now on $\mathcal{F}_{\leadsto} = \{ \langle f_n \rangle_{n \in \omega} : f_n \rightsquigarrow 0 \}$ for a notion of convergence \rightsquigarrow .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

And countably generated ideals

Assume that I is countably generated, and fix sets $\langle C_i \rangle_{i \in \omega}$ such that $C_i \subseteq C_{i+1}$ for all $i \in \omega$ and for every $A \in I$, there exists $k \in \omega$ such that $A \subseteq C_k$. We can assume that $C_{i+1} \setminus C_i \neq \emptyset$ for all $i \in \omega$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

And countably generated ideals

Assume that I is countably generated, and fix sets $\langle C_i \rangle_{i \in \omega}$ such that $C_i \subseteq C_{i+1}$ for all $i \in \omega$ and for every $A \in I$, there exists $k \in \omega$ such that $A \subseteq C_k$. We can assume that $C_{i+1} \setminus C_i \neq \emptyset$ for all $i \in \omega$. If $F = \langle f_n \rangle_{n \in \omega}$, $f_n \to_I 0$, we define

$$(o_{\langle C_i \rangle}F)(x)(n) = \min \left\{ k \in \omega \colon \left\{ m \in \omega \colon f_m(x) > \frac{1}{2^n} \right\} \subseteq C_k \right\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

And countably generated ideals

Assume that I is countably generated, and fix sets $\langle C_i \rangle_{i \in \omega}$ such that $C_i \subseteq C_{i+1}$ for all $i \in \omega$ and for every $A \in I$, there exists $k \in \omega$ such that $A \subseteq C_k$. We can assume that $C_{i+1} \setminus C_i \neq \emptyset$ for all $i \in \omega$. If $F = \langle f_n \rangle_{n \in \omega}$, $f_n \to_I 0$, we define

$$(o_{\langle C_i \rangle}F)(x)(n) = \min \left\{ k \in \omega \colon \left\{ m \in \omega \colon f_m(x) > \frac{1}{2^n} \right\} \subseteq C_k \right\}.$$

If $A \subseteq [0, 1]$, then $f_n \rightrightarrows_l 0$ on A if and only if $(o_{\langle C_l \rangle} F)[A]$ is bounded, and so $H^{\Rightarrow}(\mathcal{F}_{\rightarrow_l}, \rightrightarrows_l)$ holds.

And countably generated ideals

Assume that I is countably generated, and fix sets $\langle C_i \rangle_{i \in \omega}$ such that $C_i \subseteq C_{i+1}$ for all $i \in \omega$ and for every $A \in I$, there exists $k \in \omega$ such that $A \subseteq C_k$. We can assume that $C_{i+1} \setminus C_i \neq \emptyset$ for all $i \in \omega$. If $F = \langle f_n \rangle_{n \in \omega}$, $f_n \to_I 0$, we define

$$(o_{\langle C_i \rangle}F)(x)(n) = \min \left\{ k \in \omega \colon \left\{ m \in \omega \colon f_m(x) > \frac{1}{2^n} \right\} \subseteq C_k \right\}.$$

If $A \subseteq [0, 1]$, then $f_n \rightrightarrows_l 0$ on A if and only if $(o_{\langle C_l \rangle} F)[A]$ is bounded, and so $H^{\Rightarrow}(\mathcal{F}_{\rightarrow_l}, \rightrightarrows_l)$ holds.

Also, without a loss of generality we can assume that $\varphi(x)$ is increasing for all $x \in [0, 1]$. Let $x \in [0, 1]$. Let $f_j(x) = 1/2^n$ if and only if

$$j \in C_{\varphi(x)(n+1)} \setminus C_{\varphi(x)(n)}.$$

Thus, $H^{\Leftarrow}(\mathcal{F}_{\rightarrow_I}, \rightrightarrows_I)$ holds.

Further generalizations and open problems

And countably generated ideals, continued

Thus we immediately get:

And countably generated ideals, continued

Thus we immediately get:

Proposition

Assume that non(\mathcal{N}) < b. Let I be any countably generated ideal, and let $\varepsilon > 0$. Let $F = \langle f_n \rangle_{n \in \omega}$, $f_n \colon [0, 1] \to [0, 1]$, for $n \in \omega$ be such that $f_n \to_I 0$. Then there exists $A \subseteq [0, 1]$ with $m^*(A) \ge 1 - \varepsilon$ such that $f_n \rightrightarrows_I 0$ on A.

Proposition

Assume that non(\mathcal{N}) = c, and that there exists a c-Lusin set. Let I be any countably generated ideal. Then there exists $F = \langle f_n \rangle_{n \in \omega}$, $f_n: [0,1] \rightarrow [0,1]$ for $n \in \omega$ with $f_n \rightarrow_I 0$, and $\varepsilon > 0$ such that for all $A \subseteq [0,1]$ with $m^*(A) \ge 1 - \varepsilon$, $f_n \not\rightrightarrows_I 0$ on A.

Further generalizations and open problems

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Also for I^* convergence

Let $F = \langle f_n \rangle_{n \in \omega}$ be such that $f_n \to_{I^*} 0$. Let $F = \langle f_n \rangle_{n \in \omega}$ be such that $f_n \to_{I^*} 0$. For $x \in [0, 1]$ define $o_{\langle C_i \rangle}(F)(x) = \psi \in \omega^{\omega}$ by

$$\begin{split} \psi(\mathbf{0}) &= \min\left\{n \in \omega : \langle f_m \rangle_{m \in \omega \setminus C_n} \to \mathbf{0}\right\}, \\ \psi(n) &= \min\left\{m \in \omega : \forall_{I \in \omega \setminus C_{\psi(0)} \atop I > m} f_I(x) < \frac{1}{2^n}\right\}, \quad n > 0. \end{split}$$

Further generalizations and open problems

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Also for I^* convergence

Let $F = \langle f_n \rangle_{n \in \omega}$ be such that $f_n \to_{I^*} 0$. Let $F = \langle f_n \rangle_{n \in \omega}$ be such that $f_n \to_{I^*} 0$. For $x \in [0, 1]$ define $o_{\langle C_i \rangle}(F)(x) = \psi \in \omega^{\omega}$ by

$$\begin{split} \psi(\mathbf{0}) &= \min\left\{n \in \omega : \langle f_m \rangle_{m \in \omega \setminus C_n} \to \mathbf{0}\right\}, \\ \psi(n) &= \min\left\{m \in \omega : \forall_{I \in \omega \setminus C_{\psi(\mathbf{0})} \atop I > m} f_I(x) < \frac{1}{2^n}\right\}, \quad n > \mathbf{0}. \end{split}$$

It is easy to see, that o witnesses $H^{\Rightarrow}(\mathcal{F}_{\rightarrow_{I^*}}, \rightrightarrows_{I^*})$ and $H^{\Leftarrow}(\mathcal{F}_{\rightarrow_{I^*}}, \rightrightarrows_{I^*})$

Further generalizations and open problems

Also for I^* convergence, continued

Thus,

Also for I^* convergence, continued

Thus,

Proposition

Assume that non(\mathcal{N}) < b. Let I be any countably generated ideal, and let $\varepsilon > 0$. Let $F = \langle f_n \rangle_{n \in \omega}$, $f_n \colon [0,1] \to [0,1]$, for $n \in \omega$ be such that $f_n \to_{I^*} 0$. Then there exists $A \subseteq [0,1]$ with $m^*(A) \ge 1 - \varepsilon$ such that $f_n \rightrightarrows_{I^*} 0$ on A.

Proposition

Assume that non(\mathcal{N}) = c, and that there exists a c-Lusin set. Let I be any countably generated ideal. Then there exists $F = \langle f_n \rangle_{n \in \omega}$, $f_n: [0,1] \rightarrow [0,1]$ for $n \in \omega$ with $f_n \rightarrow_{I^*} 0$, and $\varepsilon > 0$ such that for all $A \subseteq [0,1]$ with $m^*(A) \ge 1 - \varepsilon$, $f_n \not\simeq_{I^*} 0$ on A.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

Further generalizations and open problems

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Analytic *P*-ideals

Fix ϕ such that $I = \text{Exh}(\phi)$. Notice that since I is a proper ideal, $\lim_{i\to\infty} \phi(\omega \setminus i) > 0$. If $\lim_{i\to\infty} \phi(\omega \setminus i) < \infty$, let

$$\varepsilon_n = \frac{\lim_{i \to \infty} \phi(\omega \setminus i)}{2^{n+1}}$$

for $n \in \omega$. Otherwise, set $\varepsilon_n = 1/2^{n+1}$.

Further generalizations and open problems

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Analytic *P*-ideals

Fix ϕ such that $I = \text{Exh}(\phi)$. Notice that since I is a proper ideal, $\lim_{i\to\infty} \phi(\omega \setminus i) > 0$. If $\lim_{i\to\infty} \phi(\omega \setminus i) < \infty$, let

$$\varepsilon_n = rac{\lim_{i \to \infty} \phi(\omega \setminus i)}{2^{n+1}}$$

for $n \in \omega$. Otherwise, set $\varepsilon_n = 1/2^{n+1}$. For a sequence of functions $F = \langle f_n \rangle_{n \in \omega}$, $f_n : [0, 1] \to [0, 1]$ such that $f_n \to_I 0$, let $o_{\phi} F \in (\omega^{\omega})^{[0, 1]}$, and

$$(o_{\phi}F)(x)(n) = \min\{k \in \omega \colon \phi(\{m \in \omega \colon f_m(x) \ge \varepsilon_n\} \setminus k) < \varepsilon_n\}.$$

Further generalizations and open problems 000000

Analytic *P*-ideals

Fix ϕ such that $I = \text{Exh}(\phi)$. Notice that since I is a proper ideal, $\lim_{i\to\infty} \phi(\omega \setminus i) > 0$. If $\lim_{i\to\infty} \phi(\omega \setminus i) < \infty$, let

$$\varepsilon_n = rac{\lim_{i \to \infty} \phi(\omega \setminus i)}{2^{n+1}}$$

for $n \in \omega$. Otherwise, set $\varepsilon_n = 1/2^{n+1}$. For a sequence of functions $F = \langle f_n \rangle_{n \in \omega}$, $f_n : [0, 1] \to [0, 1]$ such that $f_n \to_I 0$, let $o_{\phi} F \in (\omega^{\omega})^{[0, 1]}$, and

$$(o_{\phi}F)(x)(n) = \min\{k \in \omega \colon \phi(\{m \in \omega \colon f_m(x) \ge \varepsilon_n\} \setminus k) < \varepsilon_n\}.$$

Lemma (MK),[5]Let *I* be an analytic P-ideal. Then, $f_n \twoheadrightarrow_I 0$ on $A \subseteq [0,1]$ if and only if $(o_{\phi}(\langle f_n \rangle_{n \in \omega}))[A]$ is bounded in ω^{ω} . In particular, $H^{\Rightarrow}(\mathcal{F}_{\rightarrow_I}, \twoheadrightarrow_I)$ holds.

Further generalizations and open problems 000000

Analytic *P*-ideals

Fix ϕ such that $I = \text{Exh}(\phi)$. Notice that since I is a proper ideal, $\lim_{i\to\infty} \phi(\omega \setminus i) > 0$. If $\lim_{i\to\infty} \phi(\omega \setminus i) < \infty$, let

$$\varepsilon_n = rac{\lim_{i \to \infty} \phi(\omega \setminus i)}{2^{n+1}}$$

for $n \in \omega$. Otherwise, set $\varepsilon_n = 1/2^{n+1}$. For a sequence of functions $F = \langle f_n \rangle_{n \in \omega}$, $f_n : [0, 1] \to [0, 1]$ such that $f_n \to_I 0$, let $o_{\phi} F \in (\omega^{\omega})^{[0, 1]}$, and

$$(o_{\phi}F)(x)(n) = \min\{k \in \omega \colon \phi(\{m \in \omega \colon f_m(x) \ge \varepsilon_n\} \setminus k) < \varepsilon_n\}.$$

Lemma (MK),[5]Let *I* be an analytic P-ideal. Then, $f_n \rightarrow I 0$ on $A \subseteq [0, 1]$ if and only if

 $(o_{\phi}(\langle f_n \rangle_{n \in \omega}))[A]$ is bounded in ω^{ω} . In particular, $H^{\Rightarrow}(\mathcal{F}_{\rightarrow I}, \twoheadrightarrow_{I})$ holds.

Proof: By definition, $f_n \twoheadrightarrow_l 0$ on $A \Leftrightarrow$ for any $n \in \omega$, there exists $k \in \omega$ such that for all $x \in A$, $\phi(\{m \in \omega : f_m(x) \ge \varepsilon_n\} \setminus k) < \varepsilon_n \Leftrightarrow$ there exists a sequence $\langle k_n \rangle_{n \in \omega}$ of natural numbers such that for any $n \in \omega$ and $x \in A$, $\phi(\{m \in \omega : f_m(x) \ge \varepsilon_n\} \setminus k_n) < \varepsilon_n \Leftrightarrow$ for all $x \in A$, $(o_{\phi}F)(x)(n) \le k_n$.

Further generalizations and open problems 000000

Analytic *P*-ideals, continued

Theorem

(MK),[5]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Assume that non(\mathcal{N}) < \mathfrak{b} . Let I be any analytic P-ideal, $\varepsilon > 0$, and let $F = \langle f_n \rangle_{n \in \omega}$, $f_n \colon [0,1] \to [0,1]$ for $n \in \omega$, be such that $f_n \to_I 0$. Then there exists $A \subseteq [0,1]$ with $m^*(A) \ge 1 - \varepsilon$ such that $f_n \to_I 0$ on A

Preliminaries and motivation

Generalization of Pinciroli's method 0000

Applications 000000000000 Further generalizations and open problems

Analytic P-ideals, continued

Lemma

(MK),[5]

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

 $H^{\Leftarrow}(\mathcal{F}_{\rightarrow_I}, \twoheadrightarrow_I)$ holds.

Analytic *P*-ideals, continued

Lemma

(MK),[5]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $H^{\Leftarrow}(\mathcal{F}_{\rightarrow_I}, \twoheadrightarrow_I)$ holds.

Proof: Fix $x \in [0, 1]$. Notice that $\phi(\omega \setminus n)$ is a decreasing sequence with limit greater or equal to $2\varepsilon_0 > 0$, so $\phi(\omega \setminus n) \ge 2\varepsilon_0 > 0$ for any $n \in \omega$. Therefore, for each $m, n \in \omega$, there exists k > n such that $\phi(k \setminus n) > \varepsilon_m$. Let $\langle k_i \rangle_{i \in \omega}$ be an increasing sequence such that $k_0 = 0$ and $\phi(k_{i+1} \setminus \varphi(x)(i)) > \varepsilon_i$, $i \in \omega$. Set $f_j(x) = \varepsilon_i$ if $k_i \le j < k_{i+1}$. Then $f_m(x) \ge \varepsilon_n$ if and only if $m < k_{n+1}$. Hence, if $\phi(\{m \in \omega : f_m(x) \ge \varepsilon_n\} \setminus k) < \varepsilon_n$, then $k \ge \varphi(x)(n)$, so $(o_{\phi}F)(x)(n) \ge \varphi(x)(n)$ for any $n \in \omega$.

Analytic *P*-ideals, continued

Lemma

(MK),[5]

 $H^{\Leftarrow}(\mathcal{F}_{\rightarrow_I}, \twoheadrightarrow_I)$ holds.

Proof: Fix $x \in [0, 1]$. Notice that $\phi(\omega \setminus n)$ is a decreasing sequence with limit greater or equal to $2\varepsilon_0 > 0$, so $\phi(\omega \setminus n) \ge 2\varepsilon_0 > 0$ for any $n \in \omega$. Therefore, for each $m, n \in \omega$, there exists k > n such that $\phi(k \setminus n) > \varepsilon_m$. Let $\langle k_i \rangle_{i \in \omega}$ be an increasing sequence such that $k_0 = 0$ and $\phi(k_{i+1} \setminus \varphi(x)(i)) > \varepsilon_i$, $i \in \omega$. Set $f_j(x) = \varepsilon_i$ if $k_i \le j < k_{i+1}$. Then $f_m(x) \ge \varepsilon_n$ if and only if $m < k_{n+1}$. Hence, if $\phi(\{m \in \omega : f_m(x) \ge \varepsilon_n\} \setminus k) < \varepsilon_n$, then $k \ge \varphi(x)(n)$, so $(o_{\phi}F)(x)(n) \ge \varphi(x)(n)$ for any $n \in \omega$.

Theorem

(MK),[5]

Assume that non(\mathcal{N}) < \mathfrak{b} . Let I be any analytic P-ideal, $\varepsilon > 0$, and let $F = \langle f_n \rangle_{n \in \omega}$, $f_n \colon [0,1] \to [0,1]$ for $n \in \omega$, be such that $f_n \to_I 0$. Then there exists $A \subseteq [0,1]$ with $m^*(A) \ge 1 - \varepsilon$ such that $f_n \to_I 0$ on A.

Preliminaries and motivation

Generalization of Pinciroli's method 0000

Applications 0000000000000 ▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Fin^{α} ideals

Let
$$\mathcal{F}_{\alpha} = \mathcal{F}_{\rightarrow \mathsf{Fin}^{\alpha}}$$
.

Fin^{α} ideals

Let $\mathcal{F}_{\alpha} = \mathcal{F}_{\rightarrow \operatorname{cin} \alpha}$. Fix a bijection $b: \omega^2 \to \omega$ and a bijection $a_\beta: \omega \to \beta \setminus \{0\}$ for any limit $\beta < \omega_1$. We define $o_{\alpha}: \mathcal{F}_{\alpha} \to (\omega^{\omega})^{[0,1]}$ in the following way. Let $\varepsilon_n = 1/2^n$ for $n \in \omega$, and let

$$\mathcal{F}_{\alpha}^{n} = \{ \langle f_{n} \rangle_{n \in \omega} : \forall_{n \in \omega} f_{n} : [0, 1] \to [0, 1] \land \forall_{x \in [0, 1]} \{ q \in \omega : f_{q}(x) \ge \varepsilon_{n} \} \in \mathsf{Fin}^{\alpha} \}$$

First, define $o_{\alpha}^n: \mathcal{F}_{\alpha}^n \to (\omega^{\omega})^{[0,1]}, n \in \omega, 0 < \alpha < \omega_1$, by induction on α . Let

$$M_{1,n,x} = \min\{p \in \omega \colon \forall_{q \ge p} f_q(x) < \varepsilon_n\},\$$

and let

$$(o_1^n F)(x)(k) = M_{1,n,x}$$

be a constant sequence. Given o_{α}^n , let

$$M_{\alpha+1,n,x} = \min\left\{p \in \omega \colon \forall_{q \ge p} \{m \in \omega \colon f_{b(q,m)}(x) \ge \varepsilon_n\} \in \mathsf{Fin}^{\alpha}\right\},\$$

and

$$(o_{\alpha+1}^n F)(x)(k) = \begin{cases} M_{\alpha+1,n,x} & \text{for } k = b(p,q), \\ p < M_{\alpha+1,n,x} + 1, q \in \omega, \\ \left(o_{\alpha}^n \left\langle f_{b(p-1,r)} \right\rangle_{r \in \omega} \right)(x)(q), & \text{for } k = b(p,q), \\ p \ge M_{\alpha+1,n,x} + 1, q \in \omega. \end{cases}$$

This definition is correct, since $\langle f_{b(p-1,r)} \rangle_{r \in a} \in \mathcal{F}_{\alpha}^{n}$ for $p \geq M_{\alpha+1,n,x} + 1$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Fin^{α} ideals, continued

Moreover, for limit $\beta < \omega_1$, let

$$M_{\beta,n,x} = \min\left\{p \in \omega \colon \forall_{q \ge p} \{m \in \omega \colon f_{b(q,m)}(x) \ge \varepsilon_n\} \in \mathsf{Fin}_{a_\beta(q)}\right\}$$

and

$$(o_{\beta}^{n}F)(x)(k) = \begin{cases} M_{\beta,n,x} & \text{for } k = b(p,q), \\ p < M_{\beta,n,x} + 1, q \in \omega, \\ \left(o_{a_{\beta}(p-1)}^{n} \left\langle f_{b(p-1,r)} \right\rangle_{r \in \omega}\right)(x)(q), & \text{for } k = b(p,q), \\ p \ge M_{\beta,n,x} + 1, q \in \omega. \end{cases}$$

This definition is correct, since, for each $p \ge M_{\beta,n,x} + 1$, $\langle f_{b(p-1,r)} \rangle_{r \in \omega} \in \mathcal{F}^n_{a_\beta(p-1)}$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Fin^{α} ideals, continued

Moreover, for limit $\beta < \omega_1$, let

$$\mathcal{M}_{\beta,n,x} = \min\left\{ p \in \omega \colon \forall_{q \ge p} \{ m \in \omega \colon f_{b(q,m)}(x) \ge \varepsilon_n \} \in \mathsf{Fin}_{a_\beta(q)} \right\}$$

and

$$(o_{\beta}^{n}F)(x)(k) = \begin{cases} M_{\beta,n,x} & \text{for } k = b(p,q), \\ p < M_{\beta,n,x} + 1, q \in \omega, \\ \left(o_{a_{\beta}(p-1)}^{n} \left\langle f_{b(p-1,r)} \right\rangle_{r \in \omega}\right)(x)(q), & \text{for } k = b(p,q), \\ p \ge M_{\beta,n,x} + 1, q \in \omega. \end{cases}$$

This definition is correct, since, for each $p \ge M_{\beta,n,x} + 1$, $\langle f_{b(p-1,r)} \rangle_{r \in \omega} \in \mathcal{F}^n_{a_\beta(p-1)}$. Notice that $\mathcal{F}_\alpha \subseteq \mathcal{F}^n_\alpha$, for any $n \in \omega$. Therefore, finally let

$$(o_{\alpha}F)(x)(k) = (o_{\alpha}^{n}F)(x)(m),$$

for k = b(n, m), $n, m \in \omega$.

Further generalizations and open problems

Fin^{α} ideals, continued

The construction is done in such a way that $H^{\Rightarrow}(\mathcal{F}_{\alpha}, \rightrightarrows_{\mathsf{Fin}^{\alpha}})$ holds.

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

Further generalizations and open problems 000000

Fin^{α} ideals, continued

The construction is done in such a way that $H^{\Rightarrow}(\mathcal{F}_{\alpha}, \rightrightarrows_{\mathsf{Fin}^{\alpha}})$ holds.

Theorem

(MK),[5]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Assume that non(\mathcal{N}) < b. Let $0 < \alpha < \omega_1$, and let $\varepsilon > 0$ and $F = \langle f_n \rangle_{n \in \omega}$, $f_n \colon [0, 1] \to [0, 1]$ for $n \in \omega$, with $f_n \to_{\operatorname{Fin}^{\alpha}} 0$. Then there exists $A \subseteq [0, 1]$ with $m^*(A) \ge 1 - \varepsilon$ such that $f_n \Rightarrow_{\operatorname{Fin}^{\alpha}} 0$ on A.

Further generalizations and open problems 000000

Fin^{α} ideals, continued

The construction is done in such a way that $H^{\Rightarrow}(\mathcal{F}_{\alpha}, \rightrightarrows_{\mathsf{Fin}^{\alpha}})$ holds.

Theorem

(MK),[5]

Assume that non(\mathcal{N}) < \mathfrak{b} . Let $0 < \alpha < \omega_1$, and let $\varepsilon > 0$ and $F = \langle f_n \rangle_{n \in \omega}$, $f_n \colon [0, 1] \to [0, 1]$ for $n \in \omega$, with $f_n \to_{\operatorname{Fin}^{\alpha}} 0$. Then there exists $A \subseteq [0, 1]$ with $m^*(A) \ge 1 - \varepsilon$ such that $f_n \rightrightarrows_{\operatorname{Fin}^{\alpha}} 0$ on A.

Also,

Theorem

(MK),[5]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Assume that non(\mathcal{N}) = \mathfrak{c} , and that there exists a \mathfrak{c} -Lusin set. Let $0 < \alpha < \omega_1$. Then there exist $\langle f_n \rangle_{n \in \omega} \in \mathcal{F}_{\alpha}$ and $\varepsilon > 0$ such that for all $A \subseteq [0,1]$ with $m^*(A) \ge 1 - \varepsilon$, $f_n \not\rightrightarrows_{\operatorname{Fin}^{\alpha}} 0$ on A.

Further generalizations and open problems 000000

Fin^{α} ideals, continued

The construction is done in such a way that $H^{\Rightarrow}(\mathcal{F}_{\alpha}, \rightrightarrows_{\mathsf{Fin}^{\alpha}})$ holds.

Theorem

(MK),[5]

Assume that non(\mathcal{N}) < \mathfrak{b} . Let $0 < \alpha < \omega_1$, and let $\varepsilon > 0$ and $F = \langle f_n \rangle_{n \in \omega}$, $f_n \colon [0, 1] \to [0, 1]$ for $n \in \omega$, with $f_n \to_{\operatorname{Fin}^{\alpha}} 0$. Then there exists $A \subseteq [0, 1]$ with $m^*(A) \ge 1 - \varepsilon$ such that $f_n \rightrightarrows_{\operatorname{Fin}^{\alpha}} 0$ on A.

Also,

Theorem

(MK),[5]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Assume that non(\mathcal{N}) = c, and that there exists a c-Lusin set. Let $0 < \alpha < \omega_1$. Then there exist $\langle f_n \rangle_{n \in \omega} \in \mathcal{F}_{\alpha}$ and $\varepsilon > 0$ such that for all $A \subseteq [0,1]$ with $m^*(A) \ge 1 - \varepsilon$, $f_n \not\rightrightarrows_{\operatorname{Fin}^{\alpha}} 0$ on A.

Sketch of the proof: It is enough to take

$$(o_{\alpha}F)(x)(n) = M_{\alpha,n,x}.$$

Generalization of Pinciroli's method 0000

Applications 00000000000 Further generalizations and open problems •00000

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Other properties

A mapping $o: \mathcal{F} \to (\omega^{\omega})^{[0,1]}$ is said to be measurability preserving, if for any sequence of measurable functions $\langle f_n \rangle_{n \in \omega} \in \mathcal{F}$, o(f) is measurable as well.

Further generalizations and open problems •00000

Other properties

A mapping $o: \mathcal{F} \to (\omega^{\omega})^{[0,1]}$ is said to be measurability preserving, if for any sequence of measurable functions $\langle f_n \rangle_{n \in \omega} \in \mathcal{F}$, o(f) is measurable as well.

Other hypotheses

- $(\bar{H}^{\Rightarrow}(\mathcal{F}, \oplus))$ There exists $o: \mathcal{F} \to (\omega^{\omega})^{[0,1]}$ such that for every $F \in \mathcal{F}$ and every $A \subseteq [0,1]$ if o(F)[A] is bounded in $(\omega^{\omega}, \leq^*)$, then $F \oplus 0$ on A.
- $(\bar{H}^{\leftarrow}(\mathcal{F}, \oplus))$ There exists $o: \mathcal{F} \to (\omega^{\omega})^{[0,1]}$ which is cofinal (with respect to \leq) such that for every $F \in \mathcal{F}$ and every $A \subseteq [0,1]$, if $F \oplus 0$ on A, then o(F)[A] is bounded in $(\omega^{\omega}, \leq^*)$.
- $(M^{\Rightarrow}(\mathcal{F}, \hookrightarrow))$ There exists measurability preserving $o: \mathcal{F} \to (\omega^{\omega})^{[0,1]}$ such that for every $F \in \mathcal{F}$ and every $A \subseteq [0,1]$ if o(F)[A] is bounded in (ω^{ω}, \leq) , then $F \hookrightarrow 0$ on A.
- $(M^{\leftarrow}(\mathcal{F}, \hookrightarrow))$ There exists measurability preserving cofinal $o : \mathcal{F} \to (\omega^{\omega})^{[0,1]}$ such that for every $F \in \mathcal{F}$ and every $A \subseteq [0,1]$, if $F \hookrightarrow 0$ on A, then o(F)[A] is bounded in (ω^{ω}, \leq) .
- $(\overline{M}^{\Rightarrow}(\mathcal{F}, \hookrightarrow))$ There exists measurability preserving $o: \mathcal{F} \to (\omega^{\omega})^{[0,1]}$ such that for every $F \in \mathcal{F}$ and every $A \subseteq [0,1]$ if o(F)[A] is bounded in $(\omega^{\omega}, \leq^*)$, then $F \hookrightarrow 0$ on A.
- $(\overline{M}^{\leftarrow}(\mathcal{F}, \hookrightarrow))$ There exists measurability preserving $o: \mathcal{F} \to (\omega^{\omega})^{[0,1]}$ which is cofinal (with respect to \leq) such that for every $F \in \mathcal{F}$ and every $A \subseteq [0,1]$, if $F \leftrightarrow 0$ on A, then o(F)[A] is bounded in $(\omega^{\omega}, \leq^*)$.

W/a got that

Further generalizations and open problems

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Other properties, continued

$$\begin{array}{cccc} & H^{\Rightarrow}(\mathcal{F}, \hookrightarrow) & \Rightarrow & H^{\Rightarrow}(\mathcal{F}, \hookrightarrow) \\ & & & & & \\ & & & & \\ \bar{M}^{\Rightarrow}(\mathcal{F}, \hookrightarrow) & \Rightarrow & M^{\Rightarrow}(\mathcal{F}, \hookrightarrow) \end{array} & \begin{array}{cccc} & H^{\leftarrow}(\mathcal{F}, \hookrightarrow) \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\$$

14/

. . . .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Other properties, continued

$$\begin{array}{cccc} & \text{ five get that} \\ & \bar{H}^{\Rightarrow}(\mathcal{F}, \oplus) & \Rightarrow & H^{\Rightarrow}(\mathcal{F}, \oplus) \\ & & & \uparrow \\ & \bar{M}^{\Rightarrow}(\mathcal{F}, \oplus) & \Rightarrow & M^{\Rightarrow}(\mathcal{F}, \oplus) \end{array} & \begin{array}{cccc} & H^{\leftarrow}(\mathcal{F}, \oplus) \\ & & & \uparrow \\ & & & \uparrow \\ & & & M^{\leftarrow}(\mathcal{F}, \oplus) \end{array} & \Rightarrow & \bar{M}^{\leftarrow}(\mathcal{F}, \oplus) \end{array}$$

It is also easy to get the following Corollary

Corollary (M. Repický), [10] Assume that $M^{\Rightarrow}(\mathcal{F}_{\rightarrow}, \hookrightarrow)$ holds. Then for every sequence of measurable functions $F = \langle f_n \rangle_n \in \omega \in \mathcal{F}_{\rightarrow}$, and $\varepsilon > 0$, there exists a measurable set $A \subseteq [0, 1]$ such that $m(A) \ge 1 - \varepsilon$, and $f \leftrightarrow 0$ on A.

Other properties, continued

It is also easy to get the following Corollary

Corollary (M. Repický), [10] Assume that $M^{\Rightarrow}(\mathcal{F}_{\rightarrow}, \hookrightarrow)$ holds. Then for every sequence of measurable functions $F = \langle f_n \rangle_n \in \omega \in \mathcal{F}_{\rightarrow}$, and $\varepsilon > 0$, there exists a measurable set $A \subseteq [0, 1]$ such that $m(A) \ge 1 - \varepsilon$, and $f \hookrightarrow 0$ on A.

Also the negative theorem can be slightly refined

Corollary

(M. Repický), [10]

Assume that non(\mathcal{N}) = c, and that there exists a c-Lusin set. If $\overline{H}^{\Leftarrow}(\mathcal{F}_{\leadsto}, \hookrightarrow)$ holds, then there exist $\langle f_n \rangle_{n \in \omega} \in \mathcal{F}_{\leadsto}$ and $\varepsilon > 0$ such that for all $A \subseteq [0, 1]$ with $m^*(A) \ge 1 - \varepsilon$, $f_n \not\hookrightarrow 0$ on A

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Repický's results

In [10] the property $\bar{H}^{\leftarrow}(\mathcal{F}_{\leadsto}, \hookrightarrow)$, where \leadsto and \ominus are various notions of convergence with respect to I is considered. In particular, it is proven that if \leadsto is any notion of convergence weaker than \rightarrow , and \ominus is stronger than $\rightrightarrows_{I} \cup \frac{QN}{\longrightarrow}_{I^{*}}$, then $\bar{H}^{\leftarrow}(\mathcal{F}_{\leadsto}, \ominus)$ holds.

Further generalizations and open problems 000000

Repický's results

In [10] the property $\bar{H}^{\leftarrow}(\mathcal{F}_{\rightarrow}, \hookrightarrow)$, where \rightarrow and \ominus are various notions of convergence with respect to I is considered. In particular, it is proven that if \rightarrow is any notion of convergence weaker than \rightarrow , and \ominus is stronger than $\exists_I \cup \frac{QN}{\rightarrow}_{I^*}$, then $\bar{H}^{\leftarrow}(\mathcal{F}_{\rightarrow}, \ominus)$ holds. Actually, the function obtained in the proof of this observation witnesses $\bar{M}^{\leftarrow}(\mathcal{F}_{\rightarrow}, \ominus)$, and we have the following.

Repický's results

In [10] the property $\bar{H}^{\leftarrow}(\mathcal{F}_{\rightarrow}, \hookrightarrow)$, where \rightarrow and \ominus are various notions of convergence with respect to I is considered. In particular, it is proven that if \rightarrow is any notion of convergence weaker than \rightarrow , and \ominus is stronger than $\rightrightarrows_{I} \cup \frac{QN}{\rightarrow}_{I^{*}}$, then $\bar{H}^{\leftarrow}(\mathcal{F}_{\rightarrow}, \ominus)$ holds. Actually, the function obtained in the proof of this observation witnesses $\bar{M}^{\leftarrow}(\mathcal{F}_{\rightarrow}, \ominus)$, and we have the following.

Corollary

(MK),[6]

Assume that I is an ideal on ω , and \rightsquigarrow is any notion of convergence weaker than \rightarrow , and \Leftrightarrow is stronger than $\rightrightarrows_I \cup \frac{QN}{}_{I^*}$, then $\bar{M}^{\Leftarrow}(\mathcal{F}_{\rightsquigarrow}, \ominus)$ holds.

Repický's results, continued

\mathcal{I} :	$M^{\Rightarrow}(\mathcal{F}_{\rightarrow_{I}}, \Rightarrow_{I})$	$H^{\Longrightarrow}(\mathcal{F}_{\rightarrow_{I}}, \rightrightarrows_{I})$	$M^{\Longrightarrow}(\mathcal{F}_{\rightarrow_{I^*}}, \rightrightarrows_{I^*})$	$H^{\Rightarrow}(\mathcal{F}_{\rightarrow_{I^*}}, \rightrightarrows_{I^*})$
Fin \in	\checkmark	√	✓	✓
$B \subseteq \omega$ is coinfinite, then $\langle B \rangle \in$	\checkmark	\checkmark	\checkmark	~
downward \leq_{RK} closed	\checkmark	~		
downward \leq_{RB} closed	✓	~	\checkmark	\checkmark
$\langle I_n \rangle_{n \in \omega} \in \mathcal{I}^{\omega}$, then	✓	~	\checkmark	\checkmark
$b\left[\sum_{n\in\omega}I_{n}\right]\in$				
$\mathcal{J} \in [\mathcal{I}]^{\omega}$, then $\bigcap \mathcal{I} \in$	✓	~	✓	 ✓
$I, J \in \mathcal{I}, J$ is a P-ideal, then $I \lor J \in$		\checkmark		\checkmark
$ \begin{array}{c} \langle I_n \rangle_{n \in \omega} \in \mathcal{I}^{\omega}, \text{ then} \\ \langle I_n \rangle_{n \in \omega} \in \omega \} \in \end{array} $				✓
$\langle I_n \rangle_{n \in \omega}$ is an increasing sequence of ideals from \mathcal{I} , then $\bigvee \{I_n : n \in \omega\} \in$		\checkmark		
$\langle I_n \rangle_{n \in \omega}$ is an increasing sequence of analytic ideals from \mathcal{I} , then $\bigvee \{I_n \colon n \in \omega\} \in$		\checkmark	~	
$\langle I_n \rangle_{n \in \omega}$ is an increasing sequence of Borel ideals from \mathcal{I} , then $\bigvee \{I_n \colon n \in \omega\} \in$	~	\checkmark	√	
$\begin{bmatrix} I \in \mathcal{I}, \langle I_n \rangle_{n \in \omega} \in \mathcal{I}^{\omega}, \\ b \begin{bmatrix} I - \prod_{n \in \omega} I_n \end{bmatrix} \in \end{bmatrix}$		\checkmark		~
$\begin{array}{c c} I \in \mathcal{I}, & \langle I_n \rangle_{n \in \omega} \text{ is a se-} \\ \text{quence of analytic ideals from } \mathcal{I}, \\ b \left[I - \prod_{n \in \omega} I_n \right] \in \end{array}$	~	\checkmark	√	
$I \in \mathcal{I}, \langle I_n \rangle_{n \in \omega} \in \mathcal{I}^{\omega}, \\ I - \underline{\lim}_{n \in \omega} I_n \in$		\checkmark		✓
$\begin{array}{ccc} I \in \mathcal{I}, \ \langle I_n \rangle_{n \in \omega} & \text{is a se-} \\ \text{quence of analytic ideals from } \mathcal{I}, \\ I-\underline{\lim}_{n \in \omega} I_n \in \end{array}$	\checkmark	V	\checkmark	✓

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Further generalizations and open problems 000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Open problems

Problem

Is there any possible condition, which implies that classic Egorov's statement (measurable version) does not hold for a given ideal in ZFC?

Further generalizations and open problems $0000 \bullet 0$

Open problems

Problem

Is there any possible condition, which implies that classic Egorov's statement (measurable version) does not hold for a given ideal in ZFC?

Problem

Are there any examples of ideals which prove that the classes of all ideals satisfying $M^{\Rightarrow}(\mathcal{F}_{\rightarrow_{I}}, \rightrightarrows_{I}), H^{\Rightarrow}(\mathcal{F}_{\rightarrow_{I}}, \rightrightarrows_{I}), M^{\Rightarrow}(\mathcal{F}_{\rightarrow_{I^{*}}}, \rightrightarrows_{I^{*}}),$ and $H^{\Rightarrow}(\mathcal{F}_{\rightarrow_{I^{*}}}, \rightrightarrows_{I^{*}})$ are pairwise distinct?

Further generalizations and open problems $0000 \bullet 0$

Open problems

Problem

Is there any possible condition, which implies that classic Egorov's statement (measurable version) does not hold for a given ideal in ZFC?

Problem

Are there any examples of ideals which prove that the classes of all ideals satisfying $M^{\Rightarrow}(\mathcal{F}_{\rightarrow_{I}}, \rightrightarrows_{I}), H^{\Rightarrow}(\mathcal{F}_{\rightarrow_{I}}, \rightrightarrows_{I}), M^{\Rightarrow}(\mathcal{F}_{\rightarrow_{I^{*}}}, \rightrightarrows_{I^{*}}),$ and $H^{\Rightarrow}(\mathcal{F}_{\rightarrow_{I^{*}}}, \rightrightarrows_{I^{*}})$ are pairwise distinct?

Problem

Is there an ideal I such that
$$\bar{H} \leftarrow \left(\mathcal{F}_{\rightarrow_{I}}, \frac{QN}{\longrightarrow}\right)$$
 does not hold?

Further generalizations and open problems

References

M. Balcerzak, K. Dems, and A. Komisarski. Statistical convergence and ideal convergence for sequences of functions.

J. Math. Anal. Appl., 328:715-729, 2007.

- [2] T. Bartoszyński and H. Judah. Set theory: on the structure of the real line. Peters, 1995.
- [3] P. Das and D. Chandra. Spaces not distinguishing pointwise and I-quasinormal convergence. *Comment. Math. Univ. Carolin.*, 54:83–96, 2013.
- [4] D. Egorov.
 Sur les suites des fonctions mesurables.
 C. R. Acad. Sci. Paris, 152:244–246, 1911.
- [5] M. Korch. Generalized Egorov's statement for ideals. *Real Anal. Exchange*, 42(2), 2017.
- [6] M. Korch. Measure and convergence: special subsets of the real line and their generalizations. PhD thesis, University of Warsaw, 2017.

[7] N. Mrożek.

Ideal version of Egorov's theorem for analytic P-ideals. J. Math. Anal. Appl., 349:452-458, 2009.

[8] N. Mrożek.

Zbieżność ideałowa ciągów funkcyjnych. PhD thesis, University of Gdańsk, 2010. (Polish).

[9] R. Pinciroli.

On the independence of a generalized statement of Egoroff's theorem from ZFC after T. Weiss. *Real Anal. Exchange*, 32(1):225–232, 2006.

イロト 不得 トイヨト イヨト

3

[10] M. Repický. Ideal generalizations of Egoroff's theorem.

preprint, 2017.

[11] S. Solecki.

Analytic ideals and their applications. Ann. Pure Appl. Logic, 99:51-72, 1999.

[12] T. Weiss.

A note on generalized Egorov's theorem. East West Journal of Mathematics, 18(2), 2016.